A combination of solid and transverse jet obstacles is proposed to trigger flame acceleration and deflagration-to-detonation transition (DDT). A numerical study of this approach is performed by solving the reactive Navier–Stokes equations deploying an adaptive mesh refinement technique. A detailed hydrogen–air reaction mechanism with 12 species and 42 steps is employed. The efficiency and mechanisms of the combined obstacles on the flame acceleration are investigated comprehensively. The effects of multiple jets, jet start time, and jet stagnation pressure on the DDT process are studied. Results show that there is a 22.26% improvement in the DDT run-up time and a 33.36% reduction in the DDT run-up distance for the combined obstacles compared to that having only solid obstacles. The jet acts as an obstruction by producing a suitable blockage ratio and introducing an intense turbulent region due to the Kelvin–Helmholtz instability. This leads to dramatic flame–turbulence interactions, increasing the flame surface area dramatically. The dual jet produces mushroom-like vortices, leading to a significantly stretched flame front and intensive Kelvin–Helmholtz instabilities, and therefore, these features produce a high flame acceleration. As the jet operation time decreases, the jet obstacle almost changes its role from both physical blockage ratio and turbulence and vorticity generator to a physical blockage ratio. There is a moderate jet stagnation pressure that reduces the run-up time to detonation and run-up distance to detonation in the obstacle-laden chamber. While further increasing the jet stagnation pressure, it does not have a positive effect on shortening the detonation transition.

1.
W. H.
Heiser
and
T.
Pratt
, “
Thermodynamic cycle analysis of pulse detonation engines
,”
J. Propul. Power
18
,
68
(
2002
).
2.
G. D.
Roy
,
S. M.
Frolov
,
A. A.
Borisov
, and
D. W.
Netzer
, “
Pulse detonation propulsion: Challenges, current status, and future perspective
,”
Prog. Energy Combust. Sci.
30
,
545
(
2004
).
3.
J.
Shepherd
and
E.
Wintenberger
, “
Thermodynamic analysis of combustion processes for propulsion systems
,” AIAA Paper No. 2004-1033,
2004
.
4.
S. M.
Frolov
,
V. S.
Aksenov
,
V. S.
Ivanov
,
I. O.
Shamshin
, and
A. E.
Zangiev
, “
Air-breathing pulsed detonation thrust module: Numerical simulations and firing tests
,”
Aerosp. Sci. Technol.
89
,
275
(
2019
).
5.
M. V.
Papalexandris
, “
Numerical simulation of detonations in mixtures of gases and solid particles
,”
J. Fluid Mech.
507
,
95
(
2004
).
6.
G.
Ciccarelli
and
S.
Dorofeev
, “
Flame acceleration and transition to detonation in ducts
,”
Prog. Energy Combust. Sci.
34
,
499
(
2008
).
7.
X.
Cai
,
R.
Deiterding
,
J.
Liang
, and
Y.
Mahmoudi Larimi
, “
Mechanism of detonation stabilization in supersonic model combustor
,”
J. Fluid Mech.
910
,
A40
(
2021
).
8.
C. M.
Romick
,
T. D.
Aslam
, and
J. M.
Powers
, “
Verified and validated calculation of unsteady dynamics of viscous hydrogen–air detonations
,”
J. Fluid Mech.
769
,
154
(
2015
).
9.
B.
Zhang
,
N.
Mehrjoo
,
H. D.
Ng
,
J. H.
Lee
, and
C.
Bai
, “
On the dynamic detonation parameters in acetylene–oxygen mixtures with varying amount of argon dilution
,”
Combust. Flame
161
,
1390
(
2014
).
10.
B.
Zhang
,
V.
Kamenskihs
,
H. D.
Ng
, and
J. H. S.
Lee
, “
Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures
,”
Proc. Combust. Inst.
33
,
2265
(
2011
).
11.
S. B.
Dorofeev
,
A. V.
Bezmelnitsin
,
V. P.
Sidorov
,
J. G.
Yankin
, and
I. D.
Matsukov
, “
Turbulent jet initiation of detonation in hydrogen–air mixtures
,”
Shock Waves
6
,
73
(
1996
).
12.
C.
Bai
,
B.
Zhang
,
G.
Xiu
,
Q.
Liu
, and
M.
Chen
, “
Deflagration to detonation transition and detonation structure in diethyl ether mist/aluminum dust/air mixtures
,”
Fuel
107
,
400
(
2013
).
13.
Z.
Wang
,
J.
Lu
,
J.
Huang
,
C.
Peng
, and
L.
Zheng
, “
Experimental investigation on the operating characteristics in a multi-tube two-phase valveless air-breathing pulse detonation engine
,”
Appl. Therm. Eng.
73
,
23
(
2014
).
14.
V. N.
Gamezo
,
T.
Ogawa
, and
E. S.
Oran
, “
Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture
,”
Proc. Combust. Inst.
31
,
2463
(
2007
).
15.
J. D.
Regele
,
D. R.
Kassoy
,
M.
Aslani
, and
O. V.
Vasilyev
, “
Evolution of detonation formation initiated by a spatially distributed, transient energy source
,”
J. Fluid Mech.
802
,
305
(
2016
).
16.
H.
Peng
,
Y.
Huang
,
R.
Deiterding
,
Z.
Luan
,
F.
Xing
, and
Y.
You
, “
Effects of jet in crossflow on flame acceleration and deflagration to detonation transition in methane–oxygen mixture
,”
Combust. Flame
198
,
69
(
2018
).
17.
B. W.
Knox
,
D. J.
Forliti
,
C. A.
Stevens
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Unsteady flame speed control and deflagration-to-detonation transition enhancement using fluidic obstacles
,”
AIAA Paper No. 2010-151
,
2010
.
18.
Z.
Wang
,
Y.
Zhang
,
J.
Huang
,
Z.
Liang
,
L.
Zheng
, and
J.
Lu
, “
Ignition method effect on detonation initiation characteristics in a pulse detonation engine
,”
Appl. Therm. Eng.
93
,
1
(
2016
).
19.
C. N.
Markides
and
E.
Mastorakos
, “
Experimental investigation of the effects of turbulence and mixing on autoignition chemistry
,”
Flow, Turbul. Combust.
86
,
585
(
2011
).
20.
R.
Starke
and
P.
Roth
, “
An experimental investigation of flame behavior during explosions in cylindrical enclosures with obstacles
,”
Combust. Flame
75
,
111
(
1989
).
21.
M.
Fairweather
,
G.
Hargrave
,
S.
Ibrahim
, and
D.
Walker
, “
Studies of premixed flame propagation in explosion tubes
,”
Combust. Flame
116
,
504
(
1999
).
22.
R.
Lindstedt
and
V.
Sakthitharan
, “
Time resolved velocity and turbulence measurements in turbulent gaseous explosions
,”
Combust. Flame
114
,
469
(
1998
).
23.
Y.
Huang
,
H.
Tang
,
J.
Li
, and
C.
Zhang
, “
Studies of DDT enhancement approaches for kerosene-fueled small-scale pulse detonation engines applications
,”
Shock Waves
22
,
615
(
2012
).
24.
T.
Li
,
X.
Wang
,
B.
Xu
, and
F.
Kong
, “
An efficient approach to achieve flame acceleration and transition to detonation
,”
Phys. Fluids
33
,
056103
(
2021
).
25.
E. S.
Oran
and
V. N.
Gamezo
, “
Origins of the deflagration-to-detonation transition in gas-phase combustion
,”
Combustion and flame
148
,
4
(
2007
).
26.
A.
Teodorczyk
,
P.
Drobniak
, and
A.
Dabkowski
, “
Fast turbulent deflagration and DDT of hydrogen–air mixtures in small obstructed channel
,”
Int. J. Hydrogen Energy
34
,
5887
(
2009
).
27.
A.
Heidari
and
J.
Wen
, “
Flame acceleration and transition from deflagration to detonation in hydrogen explosions
,”
Int. J. Hydrogen Energy
39
,
6184
(
2014
).
28.
M.
Cross
and
G.
Ciccarelli
, “
DDT and detonation propagation limits in an obstacle filled tube
,”
J. Loss Prev. Process Ind.
36
,
380
(
2015
).
29.
B.
Zhang
,
H.
Liu
, and
C.
Wang
, “
Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture
,”
Appl. Therm. Eng.
127
,
671
(
2017
).
30.
E. S.
Oran
,
G.
Chamberlain
, and
A.
Pekalski
, “
Mechanisms and occurrence of detonations in vapor cloud explosions
,”
Prog. Energy Combust. Sci.
77
,
100804
(
2020
).
31.
J. H.
Lee
,
The Detonation Phenomenon
(
Cambridge University Press
,
2008
).
32.
V. N.
Gamezo
,
T.
Ogawa
, and
E. S.
Oran
, “
Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing
,”
Combust. Flame
155
,
302
(
2008
).
33.
V. N.
Gamezo
,
C. L.
Bachman
, and
E. S.
Oran
, “
Flame acceleration and DDT in large-scale obstructed channels filled with methane–air mixtures
,”
Proc. Combust. Inst.
38
(
3
),
3521
358
(
2021
).
34.
Y. B.
Zel'Dovich
,
V. B.
Librovich
,
G. M.
Makhviladze
, and
G. I.
Sivashinsky
, “
On the development of detonation in a non-uniformly preheated gas
,”
Astronaut. Acta
15
,
313
(
1970
).
35.
J.
Lee
,
R.
Knystautas
, and
N.
Yoshikawa
,
Photochemical Initiation of Gaseous Detonations
(
Elsevier
,
1980
).
36.
R.
Hall
,
A.
Masri
,
P.
Yaroshchyk
, and
S.
Ibrahim
, “
Effects of position and frequency of obstacles on turbulent premixed propagating flames
,”
Combust. Flame
156
,
439
(
2009
).
37.
D.
Paxson
,
F.
Schauer
, and
D.
Hopper
, “
Performance impact of deflagration to detonation transition enhancing obstacles
,” AIAA Paper No. 2009-502,
2009
.
38.
M.
Cooper
,
S.
Jackson
,
J.
Austin
,
E.
Wintenberger
, and
J.
Shepherd
, “
Direct experimental impulse measurements for detonations and deflagrations
,”
J. Propul. Power
18
,
1033
(
2002
).
39.
K. A.
Ahmed
and
D. J.
Forliti
, “
Fluidic flame stabilization in a planar combustor using a transverse slot jet
,”
AIAA J.
47
,
2770
(
2009
).
40.
D. A.
Kessler
,
V. N.
Gamezo
, and
E. S.
Oran
, “
Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems
,”
Combust. Flame
157
,
2063
(
2010
).
41.
B.
Knox
,
D.
Forliti
,
C.
Stevens
,
J.
Hoke
, and
F.
Schauer
, “
A comparison of fluidic and physical obstacles for deflagration-to-detonation transition
,”
AIAA Paper No. 2011-
587,
2011
.
42.
S.
Zhao
,
Y.
Fan
,
H.
Lv
, and
B.
Jia
, “
Effects of a jet turbulator upon flame acceleration in a detonation tube
,”
Appl. Therm. Eng.
115
,
33
(
2017
).
43.
J. P.
McGarry
and
K. A.
Ahmed
, “
Flame–turbulence interaction of laminar premixed deflagrated flames
,”
Combust. Flame
176
,
439
(
2017
).
44.
J.
Chambers
and
K.
Ahmed
, “
Turbulent flame augmentation using a fluidic jet for deflagration-to-detonation
,”
Fuel
199
,
616
(
2017
).
45.
D. J.
Tarrant
,
J. M.
Chambers
,
P. H.
Joo
, and
K.
Ahmed
, “
Influence of transverse slot jet on premixed flame acceleration
,”
J. Propul. Power
36
,
59
(
2020
).
46.
S. M.
Frolov
,
V. A.
Smetanyuk
,
V. S.
Aksenov
, and
A. S.
Koval'
, “
Deflagration-to-detonation transition in crossed-flow fast jets of propellant components
,”
Dokl. Phys. Chem.
476
,
153
(
2017
).
47.
H.
Peng
,
Y.
Huang
,
R.
Deiterding
,
Y.
You
, and
Z.
Luan
, “
Effects of transverse jet parameters on flame propagation and detonation transition in hydrogen–oxygen–argon mixture
,”
Combust. Sci. Technol.
193
,
1516
(
2021
).
48.
J.
Cheng
,
B.
Zhang
,
H.
Liu
, and
F.
Wang
, “
The precursor shock wave and flame propagation enhancement by CO2 injection in a methane–oxygen mixture
,”
Fuel
283
,
118917
(
2021
).
49.
J.
Cheng
,
B.
Zhang
,
H.
Liu
, and
F.
Wang
, “
Experimental study on the effects of different fluidic jets on the acceleration of deflagration prior its transition to detonation
,”
Aerosp. Sci. Technol.
106
,
106203
(
2020
).
50.
W.
Zhao
,
J.
Liang
,
R.
Deiterding
,
X.
Cai
, and
X.
Wang
, “
Effect of transverse jet position on flame propagation regime
,”
Phys. Fluids
33
,
091704
(
2021
).
51.
R.
Deiterding
,
Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures
(
Brandenburgische Technische Universität Cottbus
,
Cottbus
,
2003
).
52.
S.-Y.
Lee
,
C.
Conrad
,
S.
Pal
,
R.
Santoro
,
S.
Saretto
,
J.
Watts
, and
R.
Woodward
, “
Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines
,”
J. Propul. Power
20
,
1026
(
2004
).
53.
G. B.
Goodwin
,
R. W.
Houim
, and
E. S.
Oran
, “
Effect of decreasing blockage ratio on DDT in small channels with obstacles
,”
Combust. Flame
173
,
16
(
2016
).
54.
D. G.
Goodwin
,
H. K.
Moffat
, and
R. L.
Speth
,
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
(
Caltech
,
Pasadena, CA
,
2009
).
55.
H. D.
Ng
,
Y.
Ju
, and
J. H.
Lee
, “
Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis
,”
Int. J. Hydrogen Energy
32
,
93
(
2007
).
56.
X.
Cai
,
J.
Liang
,
R.
Deiterding
,
Y.
Mahmoudi Larimi
, and
M.-B.
Sun
, “
Experimental and numerical investigations on propagating modes of detonations: Detonation wave/boundary layer interaction
,”
Combust. Flame
190
,
201
(
2018
).
57.
X.
Cai
,
R.
Deiterding
,
J.
Liang
,
M.
Sun
, and
Y.
Mahmoudi
, “
Diffusion and mixing effects in hot jet initiation and propagation of hydrogen detonations
,”
J. Fluid Mech.
836
,
324
(
2018
).
58.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
John Wiley & Sons
,
2006
).
59.
S.
Mathur
,
P.
Tondon
, and
S.
Saxena
, “
Thermal conductivity of binary, ternary and quaternary mixtures of rare gases
,”
Mol. Phys.
12
,
569
(
1967
).
60.
J. L.
Ziegler
,
R.
Deiterding
,
J. E.
Shepherd
, and
D. I.
Pullin
, “
An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry
,”
J. Comput. Phys.
230
,
7598
(
2011
).
61.
Y.
Wang
,
Z.
Chen
, and
H.
Chen
, “
Propagation of gaseous detonation in spatially inhomogeneous mixtures
,”
Phys. Fluids
33
,
116105
(
2021
).
62.
H.
Wei
,
X.
Zhang
,
H.
Zeng
,
R.
Deiterding
,
J.
Pan
, and
L.
Zhou
, “
Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space
,”
Phys. Fluids
31
,
076106
(
2019
).
63.
W.
Chen
,
J.
Liang
,
X.
Cai
, and
Y.
Mahmoudi
, “
Three-dimensional simulations of detonation propagation in circular tubes: Effects of jet initiation and wall reflection
,”
Phys. Fluids
32
,
046104
(
2020
).
64.
Y.
Zhou
,
X.
Zhang
,
L.
Zhong
,
R.
Deiterding
,
L.
Zhou
, and
H.
Wei
, “
Effects of fluctuations in concentration on detonation propagation
,”
Phys. Fluids
34
,
076101
(
2022
).
65.
R.
Deiterding
, “
A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains
,”
Comput. Struct.
87
,
769
(
2009
).
66.
C. K.
Westbrook
, “
Chemical kinetics of hydrocarbon oxidation in gaseous detonations
,”
Combust. Flame
46
,
191
(
1982
).
67.
M.
Burke
,
M.
Chaos
,
Y.
Ju
,
F.
Dryer
, and
S.
Klippenstein
, “
Comprehensive H2/O2 kinetic model for high-pressure combustion
,”
Int. J. Chem. Kinet.
44
,
444
(
2012
).
68.
X.
Cai
,
J.
Liang
,
R.
Deiterding
,
Y.
Che
, and
Z.
Lin
, “
Adaptive mesh refinement based simulations of three-dimensional detonation combustion in supersonic combustible mixtures with a detailed reaction model
,”
Int. J. Hydrogen Energy
41
,
3222
(
2016
).
69.
A. Y.
Poludnenko
,
T. A.
Gardiner
, and
E. S.
Oran
, “
Spontaneous transition of turbulent flames to detonations in unconfined media
,”
Phys. Rev. Lett.
107
,
054501
(
2011
).
70.
I. S.
Yakovenko
,
A.
Kiverin
, and
M.
Liberman
, “
Flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channel
,”
in 24th International Colloquium on the Dynamics of Explosions and Reactive Systems
,
2013
.
71.
H.
Xiao
and
E. S.
Oran
, “
Shock focusing and detonation initiation at a flame front
,”
Combust. Flame
203
,
397
(
2019
).
72.
A. D.
Kiverin
,
D. R.
Kassoy
,
M. F.
Ivanov
, and
M. A.
Liberman
, “
Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation
,”
Phys. Rev. E
87
,
033015
(
2013
).
73.
S.
Maeda
,
S.
Minami
,
D.
Okamoto
, and
T.
Obara
, “
Visualization of deflagration-to-detonation transitions in a channel with repeated obstacles using a hydrogen–oxygen mixture
,”
Shock Waves
26
,
573
(
2016
).
74.
J.
Li
,
W.-H.
Lai
,
K.
Chung
, and
F.
Lu
, “
Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air
,”
Combust. Flame
154
,
331
(
2008
).
75.
H.
Xiao
and
E. S.
Oran
, “
Flame acceleration and deflagration-to-detonation transition in hydrogen–air mixture in a channel with an array of obstacles of different shapes
,”
Combust. Flame
220
,
378
(
2020
).
76.
J.
Cheng
,
B.
Zhang
,
H.
Dick Ng
,
H.
Liu
, and
F.
Wang
, “
Effects of inert gas jet on the transition from deflagration to detonation in a stoichiometric methane–oxygen mixture
,”
Fuel
285
,
119237
(
2021
).
77.
O. Y.
Al-Thehabey
, “
Modeling the amplitude growth of Richtmyer–Meshkov instability in shock–flame interactions
,”
Phys. Fluids
32
,
104103
(
2020
).
You do not currently have access to this content.