This article aims to make a detailed analysis of co-flowing plane Couette flows. Particularly, the variation of flow quantities from the turbulent to non-turbulent region is studied. While the enstrophy exhibits a sharp jump, the other quantities (e.g., mean velocity, Reynolds normal stress, and kinetic energy) show a continuous variation across the interface. The budget analysis of Reynolds normal stresses reveals that the terms playing a key role in turbulence transportation vary depending on the Reynolds normal stress under study. The terms production, diffusion, and redistribution play an important role in streamwise Reynolds stress (uu¯). In the spanwise Reynolds stress (vv¯), the diffusion terms play a significant role. In the wall-normal Reynolds stress (ww¯), only the redistribution term is significant. The influence of one flow over another in the co-flow state was observed through the additional mean velocity and Reynolds normal stress found in the system compared to a standard plane Couette flow (pCf). Comparing the co-flow system with a conventional pCf system, the former exhibits greater vorticity, vortex stretching, and kinetic energy. A detailed analysis on the geometry and topology of flow structures was studied using flow invariants.

1.
D. K.
Bisset
,
J. C. R.
Hunt
, and
M. M.
Rogers
, “
The turbulent/non-turbulent interface bounding a far wake
,”
J. Fluid Mech.
451
,
383
410
(
2002
).
2.
J.
Westerweel
,
C.
Fukushima
,
J. M.
Pedersen
, and
J. C. R.
Hunt
, “
Mechanics of the turbulent-nonturbulent interface of a jet
,”
Phys. Rev. Lett.
95
,
174501
(
2005
).
3.
C. B.
da Silva
,
J. C.
Hunt
,
I.
Eames
, and
J.
Westerweel
, “
Interfacial layers between regions of different turbulence intensity
,”
Annu. Rev. Fluid Mech.
46
(
1
),
567
590
(
2014
).
4.
R. R.
Taveira
and
C. B.
da Silva
, “
Kinetic energy budgets near the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
25
(
1
),
015114
(
2013
).
5.
K.
Chauhan
,
J.
Philip
,
C. M.
de Silva
,
N.
Hutchins
, and
I.
Marusic
, “
The turbulent/non-turbulent interface and entrainment in a boundary layer
,”
J. Fluid Mech.
742
,
119
151
(
2014
).
6.
C. B.
da Silva
and
R. R.
Taveira
, “
The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer
,”
Phys. Fluids
22
(
12
),
121702
(
2010
).
7.
T. S.
Silva
,
M.
Zecchetto
, and
C. B.
da Silva
, “
The scaling of the turbulent/non-turbulent interface at high reynolds numbers
,”
J. Fluid Mech.
843
,
156
179
(
2018
).
8.
R. R.
Taveira
and
C. B.
da Silva
, “
Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets
,”
Phys. Fluids
26
(
2
),
021702
(
2014
).
9.
G. K.
Batchelor
,
Flow of a Uniform Incompressible Viscous Fluid
(
Cambridge University Press
,
2000
), pp.
174
263
.
10.
M. A. C.
Teixeira
and
C. B.
da Silva
, “
Turbulence dynamics near a turbulent/non-turbulent interface
,”
J. Fluid Mech.
695
,
257
287
(
2012
).
11.
C. B.
da Silva
and
J. C.
Pereira
, “
Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
20
(
5
),
055101
(
2008
).
12.
D.
Mistry
,
J.
Philip
,
J. R.
Dawson
, and
I.
Marusic
, “
Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet
,”
J. Fluid Mech.
802
,
690
725
(
2016
).
13.
T.
Watanabe
,
C. B.
da Silva
,
Y.
Sakai
,
K.
Nagata
, and
T.
Hayase
, “
Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers
,”
Phys. Fluids
28
(
3
),
031701
(
2016
).
14.
D.
Krug
,
D.
Chung
,
J.
Philip
, and
I.
Marusic
, “
Global and local aspects of entrainment in temporal plumes
,”
J. Fluid Mech.
812
,
222
250
(
2017
).
15.
G.
Borrell
and
J.
Jiménez
, “
Properties of the turbulent/non-turbulent interface in boundary layers
,”
J. Fluid Mech.
801
,
554
596
(
2016
).
16.
J.
Lee
,
H. J.
Sung
, and
T. A.
Zaki
, “
Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers
,”
J. Fluid Mech.
819
,
165
187
(
2017
).
17.
M.
Breda
and
O. R. H.
Buxton
, “
Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets
,”
J. Fluid Mech.
879
,
187
216
(
2019
).
18.
V. D.
Narasimhamurthy
,
H. I.
Andersson
, and
B.
Pettersen
, “
Novel features of a fully developed mixing-layer between co-flowing laminar and turbulent Couette flows
,”
Phys. Fluids
26
,
031703
(
2014
).
19.
V. D.
Narasimhamurthy
,
S. Å.
Ellingsen
, and
H. I.
Andersson
, “
Bilateral shear layer between two parallel Couette flows
,”
Phys. Rev. E
85
,
036302
(
2012
).
20.
K. M.
Teja
,
V. D.
Narasimhamurthy
,
H. I.
Andersson
, and
B.
Pettersen
, “
Onset of shear-layer instability at the interface of parallel Couette flows
,”
Int. J. Heat Fluid Flow
89
,
108786
(
2021
).
21.
K. M.
Teja
and
V. D.
Narasimhamurthy
, “
DNS of an oscillating shear layer between two parallel Couette flows
,” in
Proceedings of 16th Asian Congress of Fluid Mechanics
(
Springer
Singapore
,
2021
), pp.
241
246
.
22.
T. M.
Schneider
,
F.
De Lillo
,
J.
Buehrle
,
B.
Eckhardt
,
T.
Dörnemann
,
K.
Dörnemann
, and
B.
Freisleben
, “
Transient turbulence in plane Couette flow
,”
Phys. Rev. E
81
,
015301
(
2010
).
23.
L. S.
Tuckerman
and
D.
Barkley
, “
Patterns and dynamics in transitional plane Couette flow
,”
Phys. Fluids
23
,
041301
(
2011
).
24.
Q.
Pan
,
H.
Xiang
,
Z.
Wang
,
H. I.
Andersson
, and
L.
Zhao
, “
Kinetic energy balance in turbulent particle-laden channel flow
,”
Phys. Fluids
32
(
7
),
073307
(
2020
).
25.
L. A. C. A.
Schiavo
,
W. R.
Wolf
, and
J. L. F.
Azevedo
, “
Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation
,”
Phys. Fluids
29
(
11
),
115108
(
2017
).
26.
C.
Anghan
,
S.
Dave
,
S.
Saincher
, and
J.
Banerjee
, “
Direct numerical simulation of transitional and turbulent round jets: Evolution of vortical structures and turbulence budget
,”
Phys. Fluids
31
(
6
),
065105
(
2019
).
27.
R.
Darragh
,
C. A. Z.
Towery
,
M. A.
Meehan
, and
P. E.
Hamlington
, “
Lagrangian analysis of enstrophy dynamics in a highly turbulent premixed flame
,”
Phys. Fluids
33
(
5
),
055120
(
2021
).
28.
C. H.
Chen
and
K.
Bhaganagar
, “
New findings in vorticity dynamics of turbulent buoyant plumes
,”
Phys. Fluids
33
(
11
),
115104
(
2021
).
29.
D.
Xu
,
J.
Wang
,
C.
Yu
,
X.
Li
, and
S.
Chen
, “
Contribution of flow topology to the kinetic energy flux in hypersonic turbulent boundary layer
,”
Phys. Fluids
34
(
4
),
046103
(
2022
).
30.
R.
Jahanbakhshi
, “
Mechanisms of entrainment in a turbulent boundary layer
,”
Phys. Fluids
33
(
3
),
035105
(
2021
).
31.
S.
Kumar Javanappa
and
V. D.
Narasimhamurthy
, “
Structure of turbulence in planar rough Couette flows
,”
Phys. Fluids
34
(
6
),
065124
(
2022
).
32.
T.
Gourlay
, “
Flow beneath a ship at small underkeel clearance
,”
J. Ship Res.
50
(
03
),
250
258
(
2006
).
33.
M.
Manhart
, “
A zonal grid algorithm for DNS of turbulent boundary layers
,”
Comput. Fluids
33
(
3
),
435
461
(
2004
).
34.
H.
Tennekes
and
J. L.
Lumley
, “
The dynamics of turbulence
,” in
A First Course in Turbulence
(
The MIT Press
,
1972
), Vol.
3
.
35.
J.
Westerweel
,
C.
Fukushima
,
J. M.
Pedersen
, and
J. C. R.
Hunt
, “
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
,”
J. Fluid Mech.
631
,
199
230
(
2009
).
36.
S. C.
Anco
and
G. M.
Webb
, “
Hierarchies of new invariants and conserved integrals in inviscid fluid flow
,”
Phys. Fluids
32
(
8
),
086104
(
2020
).
37.
E. M.
Aydin
and
H. J.
Leutheusser
, “
Plane-Couette flow between smooth and rough walls
,”
Exp. Fluids
11
,
302
312
(
1991
).
38.
R. P.
Xavier
,
M. A. C.
Teixeira
, and
C. B.
da Silva
, “
Asymptotic scaling laws for the irrotational motions bordering a turbulent region
,”
J. Fluid Mech.
918
,
A3
(
2021
).
39.
O. M.
Phillips
, “
The irrotational motion outside a free turbulent boundary
,”
Math. Proc. Cambridge Philos. Soc.
51
(
1
),
220
229
(
1955
).
40.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
2
(
5
),
765
777
(
1990
).
41.
F.
Moisy
and
J.
Jimenez
, “
Geometry and clustering of intense structures in isotropic turbulence
,”
J. Fluid Mech.
513
,
111
133
(
2004
).
You do not currently have access to this content.