Large-Eddy Simulations are reported, dealing with an axial-flow hydrokinetic turbine operating in the wake of an upstream one. Computations were conducted on a cylindrical grid consisting of 3.8 × 109 points, using an Immersed-Boundary methodology. The performance of the downstream turbine was negatively affected by the wake of the upstream one and substantially dependent on its distance. Results demonstrated a faster wake development, compared to the case of the same turbine operating in isolated conditions within a uniform flow, due to the faster instability of the tip vortices, induced by the perturbation of the inflow conditions by the wake of the upstream turbine. In contrast with the turbine performance, the process of wake recovery was found rather insensitive to the distance from the upstream turbine. In comparison with the case of the isolated turbine, the role of radial turbulent transport just downstream of the instability of the tip vortices was found especially important in accelerating the process of wake recovery at the outer radii, providing a significant contribution together with radial advection. Further downstream, the contribution by turbulent transport was verified reinforced also within the wake core, where instead momentum replenishment by radial advection was rather limited.

1.
A.
Hussain
,
S.
Arif
, and
M.
Aslam
, “
Emerging renewable and sustainable energy technologies: State of the art
,”
Renewable Sustainable Energy Rev.
71
,
12
28
(
2017
).
2.
N.
Laws
and
B.
Epps
, “
Hydrokinetic energy conversion: Technology, research, and outlook
,”
Renewable Sustainable Energy Rev.
57
,
1245
1259
(
2016
).
3.
X.
Yang
,
K.
Haas
,
H.
Fritz
,
S.
French
,
X.
Shi
,
V.
Neary
, and
B.
Gunawan
, “
National geodatabase of ocean current power resource in USA
,”
Renewable Sustainable Energy Rev.
44
,
496
507
(
2015
).
4.
M.
Yuce
and
A.
Muratoglu
, “
Hydrokinetic energy conversion systems: A technology status review
,”
Renewable Sustainable Energy Rev.
43
,
72
82
(
2015
).
5.
C.
Niebuhr
,
M.
van Dijk
,
V.
Neary
, and
J.
Bhagwan
, “
A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential
,”
Renewable Sustainable Energy Rev.
113
,
109240
(
2019
).
6.
L.
Jenkins
,
S.
Dreyer
,
H.
Polis
,
E.
Beaver
,
A.
Kowalski
,
H.
Linder
,
T.
McMillin
,
K.
McTiernan
,
T.
Rogier
, and
L.
Wiesebron
, “
Human dimensions of tidal energy: A review of theories and frameworks
,”
Renewable Sustainable Energy Rev.
97
,
323
337
(
2018
).
7.
C.
Hachmann
,
T.
Stallard
,
P.
Stansby
, and
B.
Lin
, “
Experimentally validated study of the impact of operating strategies on power efficiency of a turbine array in a bi-directional tidal channel
,”
Renewable Energy
163
,
1408
1426
(
2021
).
8.
V.
Nago
,
I.
Santos
,
M.
Gbedjinou
,
J.
Mensah
,
G.
Tiago Filho
,
R.
Camacho
, and
R.
Barros
, “
A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration
,”
Ocean Eng.
259
,
111863
(
2022
).
9.
M.
Nuernberg
and
L.
Tao
, “
Experimental study of wake characteristics in tidal turbine arrays
,”
Renewable Energy
127
,
168
181
(
2018
).
10.
B.
Gaurier
,
C.
Carlier
,
G.
Germain
,
G.
Pinon
, and
E.
Rivoalen
, “
Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance
,”
Renewable Energy
148
,
1150
1164
(
2020
).
11.
V.
Okulov
,
I.
Kabardin
,
I.
Litvinov
,
R.
Mikkelsen
,
I.
Naumov
, and
J.
Sørensen
, “
Wakes and wake interaction between rotors and discs in an experimental model array
,”
J. Phys.
1256
,
012013
(
2019
).
12.
V.
Okulov
,
I.
Naumov
,
I.
Kabardin
,
I.
Litvinov
,
D.
Markovich
,
R.
Mikkelsen
,
J.
Sørensen
,
S.
Alekseenko
, and
D.
Wood
, “
Experiments on line arrays of horizontal-axis hydroturbines
,”
Renewable Energy
163
,
15
21
(
2021
).
13.
M.
Abolghasemi
,
M.
Piggott
,
J.
Spinneken
,
A.
Viré
,
C.
Cotter
, and
S.
Crammond
, “
Simulating tidal turbines with multi-scale mesh optimisation techniques
,”
J. Fluids Struct.
66
,
69
90
(
2016
).
14.
A.
Fernandez
, “
Numerical prediction of the turbulent wakes generated by a row of marine turbines
,”
Int. J. Mar. Energy
16
,
41
50
(
2016
).
15.
V.
Nguyen
,
S.
Guillou
,
J.
Thiébot
, and
A.
Santa Cruz
, “
Modelling turbulence with an actuator disk representing a tidal turbine
,”
Renewable Energy
97
,
625
635
(
2016
).
16.
M.
Shives
and
C.
Crawford
, “
Adapted two-equation turbulence closures for actuator disk RANS simulations of wind and tidal turbine wakes
,”
Renewable Energy
92
,
273
292
(
2016
).
17.
M.
Shives
and
C.
Crawford
, “
Tuned actuator disk approach for predicting tidal turbine performance with wake interaction
,”
Int. J. Mar. Energy
17
,
1
20
(
2017
).
18.
M.
Edmunds
,
A.
Williams
,
I.
Masters
, and
T.
Croft
, “
An enhanced disk averaged CFD model for the simulation of horizontal axis tidal turbines
,”
Renewable Energy
101
,
67
81
(
2017
).
19.
M.
Edmunds
,
A.
Williams
,
I.
Masters
,
A.
Banerjee
, and
J.
VanZwieten
, “
A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines
,”
Energy
194
,
116803
(
2020
).
20.
M.
Ahmadi
and
Z.
Yang
, “
The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine
,”
Renewable Energy
151
,
1008
1015
(
2020
).
21.
V.
Kleine
,
L.
Franceschini
,
B.
Carmo
,
A.
Hanifi
, and
D.
Henningson
, “
The stability of wakes of floating wind turbines
,”
Phys. Fluids
34
,
074106
(
2022
).
22.
W.-H.
Lam
,
L.
Chen
, and
R.
Hashim
, “
Analytical wake model of tidal current turbine
,”
Energy
79
,
512
521
(
2015
).
23.
L.
Chen
,
Y.
Yao
, and
Z.-L.
Wang
, “
Development and validation of a prediction model for the multi-wake of tidal stream turbines
,”
Renewable Energy
155
,
800
809
(
2020
).
24.
P.
Pyakurel
,
J.
VanZwieten
,
C.
Sultan
,
M.
Dhanak
, and
N.
Xiros
, “
Numerical simulation and dynamical response of a moored hydrokinetic turbine operating in the wake of an upstream turbine for control design
,”
Renewable Energy
114
,
1134
1145
(
2017
).
25.
A.
Brunetti
,
V.
Armenio
, and
F.
Roman
, “
Large eddy simulation of a marine turbine in a stable stratified flow condition
,”
J. Ocean Eng. Mar. Energy
5
,
1
19
(
2019
).
26.
C.
Gotelli
,
M.
Musa
,
M.
Guala
, and
C.
Escauriaza
, “
Experimental and numerical investigation of wake interactions of marine hydrokinetic turbines
,”
Energies
12
,
3188
(
2019
).
27.
J.
Sandoval
,
K.
Soto-Rivas
,
C.
Gotelli
, and
C.
Escauriaza
, “
Modeling the wake dynamics of a marine hydrokinetic turbine using different actuator representations
,”
Ocean Eng.
222
,
108584
(
2021
).
28.
G.
Deng
,
Z.
Zhang
,
Y.
Li
,
H.
Liu
,
W.
Xu
, and
Y.
Pan
, “
Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China
,”
Appl. Energy
264
,
114621
(
2020
).
29.
C.
Zhang
,
J.
Zhang
,
L.
Tong
,
Y.
Guo
, and
P.
Zhang
, “
Investigation of array layout of tidal stream turbines on energy extraction efficiency
,”
Ocean Eng.
196
,
106775
(
2020
).
30.
O.
Lo Brutto
,
V.
Nguyen
,
S.
Guillou
,
J.
Thiébot
, and
H.
Gualous
, “
Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio
,”
Renewable Energy
99
,
347
359
(
2016
).
31.
J.
Thiébot
,
S.
Guillou
, and
V.
Nguyen
, “
Modelling the effect of large arrays of tidal turbines with depth-averaged actuator disks
,”
Ocean Eng.
126
,
265
275
(
2016
).
32.
D.
Gajardo
,
C.
Escauriaza
, and
D.
Ingram
, “
Capturing the development and interactions of wakes in tidal turbine arrays using a coupled BEM-DES model
,”
Ocean Eng.
181
,
71
88
(
2019
).
33.
C.
Liu
and
C.
Hu
, “
An actuator line - immersed boundary method for simulation of multiple tidal turbines
,”
Renewable Energy
136
,
473
490
(
2019
).
34.
P.
Ouro
,
L.
Ramírez
, and
M.
Harrold
, “
Analysis of array spacing on tidal stream turbine farm performance using large-eddy simulation
,”
J. Fluids Struct.
91
,
102732
(
2019
).
35.
N.
Lombardi
,
S.
Ordonez-Sanchez
,
S.
Zanforlin
, and
C.
Johnstone
, “
A hybrid BEM-CFD virtual blade model to predict interactions between tidal stream turbines under wave conditions
,”
J. Mar. Sci. Eng.
8
,
969
919
(
2020
).
36.
N.
Michelet
,
N.
Guillou
,
G.
Chapalain
,
J.
Thiébot
,
S.
Guillou
,
A.
Goward Brown
, and
S.
Neill
, “
Three-dimensional modelling of turbine wake interactions at a tidal stream energy site
,”
Appl. Ocean Res.
95
,
102009
(
2020
).
37.
M.
Nguyen
,
H.
Jeong
,
H.
Tran
,
J.-S.
Park
, and
C.
Yang
, “
Energy capture evaluation of tidal current turbines arrays in Uldolmok strait, South Korea
,”
Ocean Eng.
195
,
106675
(
2020
).
38.
J.
Han
,
J.
Jung
, and
J.
Hwang
, “
Optimal configuration of a tidal current turbine farm in a shallow channel
,”
Ocean Eng.
220
,
108395
(
2021
).
39.
P.
Ouro
and
T.
Nishino
, “
Performance and wake characteristics of tidal turbines in an infinitely large array
,”
J. Fluid Mech.
925
,
A30
(
2021
).
40.
P.
Stansby
and
P.
Ouro
, “
Modelling marine turbine arrays in tidal flows
,”
J. Hydraul. Res.
60
,
187
204
(
2022
).
41.
P.
Mycek
,
B.
Gaurier
,
G.
Germain
,
G.
Pinon
, and
E.
Rivoalen
, “
Numerical and experimental study of the interaction between two marine current turbines
,”
Int. J. Mar. Energy
1
,
70
83
(
2013
).
42.
P.
Mycek
,
B.
Gaurier
,
G.
Germain
,
G.
Pinon
, and
E.
Rivoalen
, “
Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines
,”
Renewable Energy
68
,
876
892
(
2014
).
43.
A.
Olczak
,
T.
Stallard
,
T.
Feng
, and
P.
Stansby
, “
Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust
,”
J. Fluids Struct.
64
,
87
106
(
2016
).
44.
J.
Liu
,
H.
Lin
, and
S.
Purimitla
, “
Wake field studies of tidal current turbines with different numerical methods
,”
Ocean Eng.
117
,
383
397
(
2016
).
45.
M.
Nuernberg
and
L.
Tao
, “
Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh
,”
Ocean Eng.
147
,
629
646
(
2018
).
46.
P.
Ouro
,
M.
Harrold
,
T.
Stoesser
, and
P.
Bromley
, “
Hydrodynamic loadings on a horizontal axis tidal turbine prototype
,”
J. Fluids Struct.
71
,
78
95
(
2017
).
47.
E.
Lust
,
K.
Flack
, and
L.
Luznik
, “
Survey of the near wake of an axial-flow hydrokinetic turbine in quiescent conditions
,”
Renewable Energy
129
,
92
101
(
2018
).
48.
E.
Lust
,
K.
Flack
, and
L.
Luznik
, “
Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves
,”
Renewable Energy
146
,
2199
2209
(
2020
).
49.
M.
Ahmadi
, “
Influence of upstream turbulence on the wake characteristics of a tidal stream turbine
,”
Renewable Energy
132
,
989
997
(
2019
).
50.
P.
Ouro
and
T.
Stoesser
, “
Impact of environmental turbulence on the performance and loadings of a tidal stream turbine
,”
Flow, Turbul. Combust.
102
,
613
639
(
2019
).
51.
A.
Posa
and
R.
Broglia
, “
Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation
,”
Comput. Fluids
216
,
104815
(
2021
).
52.
A.
Posa
and
R.
Broglia
, “
Momentum recovery downstream of an axial-flow hydrokinetic turbine
,”
Renewable Energy
170
,
1275
1291
(
2021
).
53.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Recovery in the wake of in-line axial-flow rotors
,”
Phys. Fluids
34
,
045104
(
2022
).
54.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
200
(
1999
).
55.
E.
Balaras
, “
Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations
,”
Comput. Fluids
33
,
375
404
(
2004
).
56.
J.
Yang
and
E.
Balaras
, “
An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries
,”
J. Comput. Phys.
215
,
12
40
(
2006
).
57.
J.
Yang
,
S.
Preidikman
, and
E.
Balaras
, “
A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies
,”
J. Fluids Struct.
24
,
167
182
(
2008
).
58.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Instability of the tip vortices shed by an axial-flow turbine in uniform flow
,”
J. Fluid Mech.
920
,
A19
(
2021
).
59.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Flow over a hydrofoil in the wake of a propeller
,”
Comput. Fluids
213
,
104714
(
2020
).
60.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
The wake structure of a propeller operating upstream of a hydrofoil
,”
J. Fluid Mech.
904
,
A12
(
2020
).
61.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
The wake flow downstream of a propeller-rudder system
,”
Int. J. Heat Fluid Flow
87
,
108765
(
2021
).
62.
A.
Posa
, “
Dependence of the wake recovery downstream of a vertical axis wind turbine on its dynamic solidity
,”
J. Wind Eng. Ind. Aerodyn.
202
,
104212
(
2020
).
63.
A.
Posa
, “
Influence of tip speed ratio on wake features of a vertical axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
197
,
104076
(
2020
).
64.
A.
Posa
, “
Secondary flows in the wake of a vertical axis wind turbine of solidity 0.5 working at a tip speed ratio of 2.2
,”
J. Wind Eng. Ind. Aerodyn.
213
,
104621
(
2021
).
65.
A.
Posa
, “
Analysis of momentum recovery within the near wake of a cross-flow turbine using large Eddy simulation
,”
Comput. Fluids
231
,
105178
(
2021
).
66.
K.
Fukagata
and
N.
Kasagi
, “
Highly energy-conservative finite difference method for the cylindrical coordinate system
,”
J. Comput. Phys.
181
,
478
498
(
2002
).
67.
J. J. I. M.
Van Kan
, “
A second-order accurate pressure-correction scheme for viscous incompressible flow
,”
SIAM J. Sci. Statistical Comput.
7
,
870
891
(
1986
).
68.
T.
Rossi
and
J.
Toivanen
, “
Parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension
,”
SIAM J. Sci. Comput.
20
,
1778
1793
(
1999
).
69.
B.
Gaurier
,
G.
Germain
,
J.
Facq
,
C.
Johnstone
,
A.
Grant
,
A.
Day
,
E.
Nixon
,
F.
Di Felice
, and
M.
Costanzo
, “
Tidal energy ‘Round Robin’ tests comparisons between towing tank and circulating tank results
,”
Int. J. Mar. Energy
12
,
87
109
(
2015
).
70.
T.
Lund
,
X.
Wu
, and
K.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
258
(
1998
).
71.
R.
Stevens
,
J.
Graham
, and
C.
Meneveau
, “
A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms
,”
Renewable Energy
68
,
46
50
(
2014
).
72.
W.
Munters
,
C.
Meneveau
, and
J.
Meyers
, “
Turbulent inflow precursor method with time-varying direction for large-eddy simulations and applications to wind farms
,”
Boundary-Layer Meteorol.
159
,
305
328
(
2016
).
73.
T.
Mukha
and
M.
Liefvendahl
, “
The generation of turbulent inflow boundary conditions using precursor channel flow simulations
,”
Comput. Fluids
156
,
21
33
(
2017
).
74.
P.
Mycek
,
B.
Gaurier
,
G.
Germain
,
G.
Pinon
, and
E.
Rivoalen
, “
Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine
,”
Renewable Energy
66
,
729
746
(
2014
).
75.
H.
Quaranta
,
H.
Bolnot
, and
T.
Leweke
, “
Long-wave instability of a helical vortex
,”
J. Fluid Mech.
780
,
687
716
(
2015
).
76.
H.
Quaranta
,
M.
Brynjell-Rahkola
,
T.
Leweke
, and
D.
Henningson
, “
Local and global pairing instabilities of two interlaced helical vortices
,”
J. Fluid Mech.
863
,
927
955
(
2019
).
77.
L.
Lignarolo
,
D.
Ragni
,
C.
Krishnaswami
,
Q.
Chen
,
C.
Simão Ferreira
, and
G.
van Bussel
, “
Experimental analysis of the wake of a horizontal-axis wind-turbine model
,”
Renewable Energy
70
,
31
46
(
2014
).
78.
L.
Lignarolo
,
D.
Ragni
,
F.
Scarano
,
C.
Simão Ferreira
, and
G.
Van Bussel
, “
Tip-vortex instability and turbulent mixing in wind-turbine wakes
,”
J. Fluid Mech.
781
,
467
493
(
2015
).
79.
A.
Vinod
and
A.
Banerjee
, “
Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence
,”
Appl. Energy
254
,
113639
(
2019
).
80.
M.
Boudreau
and
G.
Dumas
, “
Comparison of the wake recovery of the axial-flow and cross-flow turbine concepts
,”
J. Wind Eng. Ind. Aerodyn.
165
,
137
152
(
2017
).
81.
M.
Boudreau
and
G.
Dumas
, “
Corrigendum to ‘Comparison of the wake recovery of the axial-flow turbine and cross-flow turbine concepts’ J of Wind Engineering and Industrial Aerodynamics (2017) 137–152
,”
J. Wind Eng. Ind. Aerodyn.
177
,
155
156
(
2018
).
82.
P.
Bachant
and
M.
Wosnik
, “
Characterising the near-wake of a cross-flow turbine
,”
J. Turbul.
16
,
392
410
(
2015
).
83.
P.
Bachant
and
M.
Wosnik
, “
Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine
,”
Energies
9
,
73
18
(
2016
).
84.
P.
Bachant
and
M.
Wosnik
, “
Modeling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS
,”
J. Renewable Sustainable Energy
8
,
053311
(
2016
).
85.
P.
Bachant
,
A.
Goude
, and
M.
Wosnik
, “
Actuator line modeling of vertical-axis turbines
,” arXiv:1605.01449 (
2016
).
86.
P.
Ouro
,
S.
Runge
,
Q.
Luo
, and
T.
Stoesser
, “
Three-dimensionality of the wake recovery behind a vertical axis turbine
,”
Renewable Energy
133
,
1066
1077
(
2019
).
87.
S.
Kang
,
Y.
Kim
,
J.
Lee
,
A.
Khosronejad
, and
X.
Yang
, “
Wake interactions of two horizontal axis tidal turbines in tandem
,”
Ocean Eng.
254
,
111331
(
2022
).
You do not currently have access to this content.