In this work, a pair of sweeping jet actuators is installed underneath the endplate of a slanted-base cylinder at ReD = 200 000. The sweeping jets form a 30° inclined angle with the endplate and are placed at different streamwise locations, and their strength is varied with a momentum coefficient, Cμ, ranging from 3.8 × 10−3 to 6.0 × 10−2. For all the cases examined in this paper, it is found that while a higher Cμ produces a higher drag reduction, the flow control energy efficiency decreases rapidly as Cμ increases. A net energy saving is achieved when Cμ is less than 0.01, and the highest energy efficiency obtained in the present study is 2.8% when the actuator pair is placed at the most upstream location tested. The drag reduction is attributed to the reaction force and an increase in the surface pressure force acting on the endplate produced by the jet pair. The contribution from the former constitutes an increasing proportion of the total drag reduction as Cμ increases leading to lower energy efficiency in flow control. Depending on the relative positions between the trajectory of the sweeping jet and afterbody vortex, sweeping jets are not only capable of altering the surface pressure distributions via directly imposing a footprint of high pressure on the surface, but also affecting the roll-up of the afterbody vortex and/or reducing its strength via injecting turbulence into the afterbody vortex.

1.
Beaudoin
,
J. F.
, and
Aider
,
J. L.
, “
Drag and lift reduction of a 3D bluff body using flaps
,”
Exp. Fluids
44
(
4
),
491
501
(
2008
).
2.
Bell
,
J. R.
, “
The slipstream and wake structure of high-speed trains
,” Doctoral dissertation (
Monash University
,
2015
).
3.
Bell
,
J. R.
,
Burton
,
D.
,
Thompson
,
M. C.
,
Herbst
,
A. H.
, and
Sheridan
,
J.
, “
Flow topology and unsteady features of the wake of a generic high-speed train
,”
J. Fluids Struct.
61
,
168
183
(
2016
).
4.
Britcher
,
C. P.
, and
Alcorn
,
C. W.
, “
Interference-free measurements of the subsonic aerodynamics of slanted-base ogive cylinders
,”
AIAA J.
29
(
4
),
520
525
(
1991
).
5.
Bulathsinghala
,
D. S.
,
Wang
,
Z.
, and
Gursul
,
I.
, “
Drag reduction by manipulation of afterbody vortices
,”
J. Aircr.
55
(
6
),
2380
2391
(
2018
).
6.
Calarese
,
W.
,
Crisler
,
W.
, and
Gustafson
,
G.
, “
Afterbody drag reduction by vortex generators
,” in
23rd Aerospace Sciences Meeting
(
AIAA
,
1985
), p.
354
.
7.
Chen
,
X.
,
Zhong
,
S.
,
Ozer
,
O.
, and
Weightman
,
A.
, “
Control of afterbody vortices from a slanted-base cylinder using sweeping jets
,”
Phys. Fluids
34
(
7
),
075115
(
2022
).
8.
Gosen
,
F.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C.
, and
Paschereit
,
C. O.
, “
Experimental investigation of compressibility effects in a fluidic oscillator
,” in
53rd AIAA Aerospace Sciences Meeting
(
AIAA
,
2015
), p.
0782
.
9.
Jackson
,
R.
, “
Upswept afterbody drag reduction through active flow control
,” Doctoral dissertation (
University of Bath
,
2019
).
10.
Jackson
,
R. W.
,
Wang
,
Z.
, and
Gursul
,
I.
, “
Control of afterbody vortices by blowing
,” in
45th AIAA Fluid Dynamics Conference
(
AIAA
,
2015
), p.
2777
.
11.
Jackson
,
R.
,
Wang
,
Z.
, and
Gursul
,
I.
, “
Control of upswept afterbody vortices using continuous and pulsed blowing
,”
J. Aircr.
57
(
1
),
76
92
(
2020
).
12.
Koklu
,
M.
, “
Effect of a Coanda extension on the performance of a sweeping-jet actuator
,”
AIAA J.
54
(
3
),
1131
1134
(
2016
).
13.
Koklu
,
M.
, “
Effects of sweeping jet actuator parameters on flow separation control
,”
AIAA J.
56
(
1
),
100
110
(
2018
).
14.
Koklu
,
M.
, and
Owens
,
L. R.
, “
Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control
,”
AIAA J.
55
(
3
),
848
860
(
2017
).
15.
Krajnović
,
S.
, “
Shape optimization of high-speed trains for improved aerodynamic performance
,”
Proc. Inst. Mech. Eng., Part F
223
(
5
),
439
452
(
2009
).
16.
Krüger
,
O.
,
Bobusch
,
B. C.
,
Woszidlo
,
R.
, and
Paschereit
,
C. O.
, “
Numerical modeling and validation of the flow in a fluidic oscillator
,” in
21st AIAA Computational Fluid Dynamics Conference
(
AIAA
,
2013
), p.
3087
.
17.
Lee
,
H. W.
, and
Kwon
,
H. B.
, “
Analysis of the effects of SD plasma on aerodynamic drag reduction of a high-speed train
,”
J. Electr. Eng. Technol.
9
(
5
),
1712
1718
(
2014
).
18.
McCluney
,
B.
, and
Marshall
,
J.
, “
Drag development of the Belfast: An account of the methods taken to solve the Belfast drag problem
,”
Aircr. Eng. Aerosp. Technol.
39
,
33
(
1967
).
19.
Mehta
,
R. D.
, and
Bradshaw
,
P.
, “
Design rules for small low speed wind tunnels
,”
Aeronaut. J.
83
(
827
),
443
453
(
1979
).
20.
Metka
,
M.
,
Gregory
,
J.
,
Sassoon
,
A.
, and
McKillen
,
J.
, “
Scaling considerations for fluidic oscillator flow control on the square-back Ahmed vehicle model
,”
SAE Int. J. Passenger. Cars—Mech. Syst.
8
,
328
337
(
2015
).
21.
Mitchell
,
A. M.
, and
Délery
,
J.
, “
Research into vortex breakdown control
,”
Prog. Aerosp. Sci.
37
(
4
),
385
418
(
2001
).
22.
Moffat
,
R. J.
, “
Describing the uncertainties in experimental results
,”
Exp. Therm. Fluid Sci.
1
(
1
),
3
17
(
1988
).
23.
Orellano
,
A.
, and
Sperling
,
S.
, “
Aerodynamic improvements and associated energy demand reduction of trains
,” in
The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains
(
Springer
,
Berlin/Heidelberg
,
2009
), pp.
219
231
.
24.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
, “
Properties of a sweeping jet emitted from a fluidic oscillator
,”
J. Fluid Mech.
857
,
216
238
(
2018
).
25.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
, “
The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow
,”
J. Fluid Mech.
863
,
215
241
(
2019
).
26.
Ott
,
C.
,
Gallas
,
Q.
,
Delva
,
J.
,
Lippert
,
M.
, and
Keirsbulck
,
L.
, “
High frequency characterization of a sweeping jet actuator
,”
Sens. Actuators, A
291
,
39
47
(
2019
).
27.
Schmidt
,
H. J.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
, “
Separation control with fluidic oscillators in water
,”
Exp. Fluids
58
(
8
),
106
(
2017
).
28.
Song
,
J.
,
Wang
,
S.
,
Wen
,
X.
,
Li
,
Z.
,
Lu
,
H.
,
Kong
,
X.
, and
Liu
,
Y.
, “
Active flow control in an S-shaped duct at Mach 0.4 using sweeping jet actuators
,”
Exp. Therm. Fluid Sci.
138
,
110699
(
2022
).
29.
Stouffer
,
R. D.
, and
Bower
,
R.
, “
Fluidic flow meter with fiber optic sensor
,” U.S. patent 5827976 (
1998
).
30.
Sun
,
Z.
,
Song
,
J.
, and
An
,
Y.
, “
Optimization of the head shape of the CRH3 high speed train
,”
Sci. China Technol. Sci.
53
(
12
),
3356
3364
(
2010
).
31.
Tian
,
H.
, “
Review of research on high-speed railway aerodynamics in China
,”
Transp. Saf. Environ.
1
(
1
),
1–21
(
2019
).
32.
Tomac
,
M. N.
, and
Gregory
,
J. W.
, “
Oscillation characteristics of mutually impinging dual jets in a mixing chamber
,”
Phys. Fluids
30
(
11
),
117102
(
2018
).
33.
Veerasamy
,
D.
,
Tajik
,
A. R.
,
Pastur
,
L.
, and
Parezanović
,
V.
, “
Effect of base blowing by a large-scale fluidic oscillator on the bistable wake behind a flat-back Ahmed body
,”
Phys. Fluids
34
(
3
),
035115
(
2022
).
34.
Wen
,
X.
,
Li
,
Z.
,
Zhou
,
L.
,
Yu
,
C.
,
Muhammad
,
Z.
,
Liu
,
Y.
,
Wang
,
S.
, and
Liu
,
Y.
, “
Flow dynamics of a fluidic oscillator with internal geometry variations
,”
Phys. Fluids
32
(
7
),
075111
(
2020
).
35.
Wortman
,
A.
, “
Reduction of fuselage form drag by vortex flows
,”
J. Aircr.
36
(
3
),
501
506
(
1999
).
36.
Woszidlo
,
R.
,
Ostermann
,
F.
, and
Schmidt
,
H. J.
, “
Fundamental properties of fluidic oscillators for flow control applications
,”
AIAA J.
57
(
3
),
978
992
(
2019
).
37.
Xia
,
X. J.
, and
Bearman
,
P. W.
, “
An experimental investigation of the wake of an axisymmetric body with a slanted base
,”
Aeronaut. Q.
34
(
1
),
24
45
(
1983
).
38.
Zigunov
,
F.
,
Sellappan
,
P.
, and
Alvi
,
F.
, “
Beyond actuator line arrays in active flow control studies: Lessons from a genetic algorithm approach
,”
Phys. Rev. Fluids
6
(
8
),
083903
(
2021
).
39.
Zigunov
,
F.
,
Sellappan
,
P.
, and
Alvi
,
F.
, “
A bluff body flow control experiment with distributed actuation and genetic algorithm-based optimization
,”
Exp. Fluids
63
(
1
),
23
(
2022
).
You do not currently have access to this content.