In the present work, we propose a novel hybrid explicit jump immersed interface approach in conjunction with a higher-order compact scheme for simulating transient complex flows governed by the streamfunction-vorticity (ψ-ζ) formulation of the Navier–Stokes (N–S) equations for incompressible viscous flows. A new strategy has been adopted for the jump conditions at the irregular points across the interface using Lagrangian interpolation on a Cartesian grid. This approach, which starts with the discretization of parabolic equations with discontinuities in the solutions, source terms, and the coefficients across the interface, can easily be accommodated into simulating flow past bluff bodies immersed in the flow. The superiority of the approach is reflected by the reduced magnitude and faster decay of the errors in comparison to other existing methods. It is seen to handle several fluid flow problems having practical implications in the real world very efficiently, including flows involving multiple and moving bodies. This includes the flow past a stationary circular and a twenty-four edge cactus cylinder, flows past two tandem cylinders, where in one situation both are fixed and in another, one of them is oscillating transversely with variable amplitude in time. To the best of our knowledge, the last two examples have been tackled for the first time by such an approach employing the ψ-ζ formulation in finite difference set-up. The extreme closeness of our computed solutions with the existing numerical and experimental results exemplifies the accuracy and the robustness of the proposed approach.

1.
See http://www.ssisc.org/lis/ for “Lis: Library of Iterative Solvers for Linear Systems” (
2022
).
2.
L.
Adams
and
Z.
Li
, “
The immersed interface/multigrid methods for interface problems
,”
SIAM J. Sci. Comput.
24
(
2
),
463
479
(
2002
).
3.
C.
Attanayake
and
D.
Senaratne
, “
Convergence of an immersed finite element method for semilinear parabolic interface problems
,”
Appl. Math. Sci.
5
(
1–4
),
135
147
(
2011
).
4.
P.
Babu
and
K.
Mahesh
, “
Aerodynamic loads on cactus-shaped cylinders at low Reynolds numbers
,”
Phys. Fluids
20
(
3
),
035112
(
2008
).
5.
S.
Behara
,
V.
Chandra
, and
B.
Ravikanth
, “
Flow-induced oscillations of three tandem circular cylinders in a two-dimensional flow
,”
J. Fluids Struct.
91
,
102711
(
2019
).
6.
P. A.
Berthelsen
and
O. M.
Faltinsen
, “
A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries
,”
J. Comput. Phys.
227
(
9
),
4354
4397
(
2008
).
7.
F.
Bouchon
and
G. H.
Peichl
, “
The immersed interface technique for parabolic problems with mixed boundary conditions
,”
SIAM J. Numer. Anal.
48
(
6
),
2247
2266
(
2010
).
8.
D.
Calhoun
, “
A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions
,”
J. Comput. Phys.
176
(
2
),
231
275
(
2002
).
9.
C.
Donna Ann
,
A Cartesian Grid Method for Solving the Streamfunction-Vorticity Equations in Irregular Geometries
(
University of Washington
,
1999
).
10.
Z.
Chen
and
J.
Zou
, “
Finite element methods and their convergence for elliptic and parabolic interface problems
,”
Numer. Math.
79
(
2
),
175
202
(
1998
).
11.
C.
Chi
,
A.
Abdelsamie
, and
D.
Thévenin
, “
A directional ghost-cell immersed boundary method for incompressible flows
,”
J. Comput. Phys.
404
,
109122
(
2020
).
12.
A.
Dipankar
,
T. K.
Sengupta
, and
S. B.
Talla
, “
Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers
,”
J. Fluid Mech.
573
,
171
190
(
2007
).
13.
R.
Franke
,
W.
Rodi
, and
B.
Schönung
, “
Numerical calculation of laminar vortex-shedding flow past cylinders
,”
J. Wind Eng. Ind. Aerodyn.
35
,
237
257
(
1990
).
14.
N.
Hosseini
,
M. D.
Griffith
, and
J. S.
Leontini
, “
The flow past large numbers of cylinders in tandem
,”
J. Fluids Struct.
98
,
103103
(
2020
).
15.
Q.
Huang
,
Z.
Liu
,
L.
Wang
,
S.
Ravi
,
J.
Young
,
J.
Lai
, and
F.-B.
Tian
, “
Streamline penetration, velocity error and consequences of the feedback immersed boundary method
,”
Phys. Fluids
34
,
097101
(
2022
).
16.
J. C.
Kalita
,
D. C.
Dalal
, and
A. K.
Dass
, “
Fully compact higher-order computation of steady-state natural convection in a square cavity
,”
Phys. Rev. E
64
(
6
),
066703
(
2001
).
17.
J. C.
Kalita
,
D. C.
Dalal
, and
A. K.
Dass
, “
A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients
,”
Int. J. Numer. Methods Fluids
38
(
12
),
1111
1131
(
2002
).
18.
J. C.
Kalita
and
R. K.
Ray
, “
A transformation-free hoc scheme for incompressible viscous flows past an impulsively started circular cylinder
,”
J. Comput. Phys.
228
(
14
),
5207
5236
(
2009
).
19.
J. C.
Kalita
and
S.
Sen
, “
α-, β-phenomena in the post-symmetry break for the flow past a circular cylinder
,”
Phys. Fluids
29
(
3
),
033603
(
2017
).
20.
C. T.
Kelley
,
Iterative Methods for Linear and Nonlinear Equations
(
SIAM
,
1995
).
21.
S.
Kim
,
M. M.
Alam
,
H.
Sakamoto
, and
Y.
Zhou
, “
Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration
,”
J. Wind Eng. Ind. Aerodyn.
97
(
5–6
),
304
311
(
2009
).
22.
P.
Kumar
and
J. C.
Kalita
, “
A comprehensive study of secondary and tertiary vortex phenomena of flow past a circular cylinder: A Cartesian grid approach
,”
Phys. Fluids
33
(
5
),
053608
(
2021
).
23.
D.-V.
Le
,
B. C.
Khoo
, and
J.
Peraire
, “
An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries
,”
J. Comput. Phys.
220
(
1
),
109
138
(
2006
).
24.
R. J.
LeVeque
and
Z.
Li
, “
The immersed interface method for elliptic equations with discontinuous coefficients and singular sources
,”
SIAM J. Numer. Anal.
31
(
4
),
1019
1044
(
1994
).
25.
C.
Li
and
S.
Zhao
, “
A matched Peaceman–Rachford ADI method for solving parabolic interface problems
,”
Appl. Math. Comput.
299
,
28
44
(
2017
).
26.
Z.
Li
, “
Immersed interface methods for moving interface problems
,”
Numer. Algorithms
14
(
4
),
269
293
(
1997
).
27.
Z.
Li
,
X.
Chen
, and
Z.
Zhang
, “
On multiscale ADI methods for parabolic PDEs with a discontinuous coefficient
,”
Multiscale Model. Simul.
16
(
4
),
1623
1647
(
2018
).
28.
M. N.
Linnick
and
H. F.
Fasel
, “
A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains
,”
J. Comput. Phys.
204
(
1
),
157
192
(
2005
).
29.
H. V. R.
Mittal
,
R. K.
Ray
, and
Q. M.
Al-Mdallal
, “
A numerical study of initial flow past an impulsively started rotationally oscillating circular cylinder using a transformation-free HOC scheme
,”
Phys. Fluids
29
(
9
),
093603
(
2017
).
30.
R.
Nepali
,
H.
Ping
,
Z.
Han
,
D.
Zhou
,
H.
Yang
,
J.
Tu
,
Y.
Zhao
, and
Y.
Bao
, “
Two-degree-of-freedom vortex-induced vibrations of two square cylinders in tandem arrangement at low Reynolds numbers
,”
J. Fluids Struct.
97
,
102991
(
2020
).
31.
F.
Noca
,
D.
Shiels
, and
D.
Jeon
, “
A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives
,”
J. Fluids Struct.
13
(
5
),
551
578
(
1999
).
32.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations
,”
J. Comput. Phys.
79
(
1
),
12
49
(
1988
).
33.
J.
Papac
,
F.
Gibou
, and
C.
Ratsch
, “
Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions
,”
J. Comput. Phys.
229
(
3
),
875
889
(
2010
).
34.
G. V.
Papaioannou
,
D. K. P.
Yue
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
On the effect of spacing on the vortex-induced vibrations of two tandem cylinders
,”
J. Fluids Struct.
24
(
6
),
833
854
(
2008
).
35.
H.
Park
,
X.
Pan
,
C.
Lee
, and
J.-I.
Choi
, “
A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows
,”
J. Comput. Phys.
314
,
774
799
(
2016
).
36.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
(
2
),
252
271
(
1972
).
37.
T. K.
Prasanth
and
S.
Mittal
, “
Vortex-induced vibration of two circular cylinders at low Reynolds number
,”
J. Fluids Struct.
25
(
4
),
731
741
(
2009
).
38.
D.
Russell
and
Z.
Jane Wang
, “
A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow
,”
J. Comput. Phys.
191
(
1
),
177
205
(
2003
).
39.
S.
Sen
and
J. C.
Kalita
, “
A 4OEC scheme for the biharmonic steady Navier–Stokes equations in non-rectangular domains
,”
Comput. Phys. Commun.
196
,
113
133
(
2015
).
40.
M.
Shaaban
and
A.
Mohany
, “
Flow-induced vibration of three unevenly spaced in-line cylinders in cross-flow
,”
J. Fluids Struct.
76
,
367
383
(
2018
).
41.
L.
Shen
and
Z.
Sun
, “
Jump phenomena in vortex-induced vibrations of a circular cylinder at a low Reynolds number
,”
Phys. Fluids
31
(
12
),
123605
(
2019
).
42.
R.
Singhal
and
J. C.
Kalita
, “
A novel higher order compact-immersed interface approach for elliptic problems
,”
Phys. Fluids
33
(
8
),
087112
(
2021
).
43.
L.
Song
and
S.
Zhao
, “
Symmetric interior penalty Galerkin approaches for two-dimensional parabolic interface problems with low regularity solutions
,”
J. Comput. Appl. Math.
330
,
356
379
(
2018
).
44.
S.
Talley
,
G.
Iaccarino
,
G.
Mungal
, and
N.
Mansour
, “
An experimental and computational investigation of flow past cacti
,” in
Annual Research Briefs, Center for Turbulence Research
(
NASA Ames/Stanford University
,
2001
), pp.
51
63
.
45.
S.
Talley
and
G.
Mungal
, “
Flow around cactus-shaped cylinders
,”
Cent. Turbul. Res. Annu. Res. Briefs
363
,
363
376
(
2002
).
46.
W.
Wang
,
Z.
Mao
,
B.
Song
, and
P.
Han
, “
Numerical investigation on vortex-induced vibration suppression of the cactus-inspired cylinder with some ribs
,”
Phys. Fluids
33
(
3
),
037127
(
2021
).
47.
W.
Wang
,
Z.
Mao
,
B.
Song
, and
T.
Zhang
, “
Vortex-induced vibration response of a cactus-inspired cylinder near a stationary wall
,”
Phys. Fluids
33
(
7
),
077119
(
2021
).
48.
Z.
Wei
,
C.
Li
, and
S.
Zhao
, “
A spatially second order alternating direction implicit (ADI) method for solving three dimensional parabolic interface problems
,”
Comput. Math. Appl.
75
(
6
),
2173
2192
(
2018
).
49.
A.
Wiegmann
and
K. P.
Bube
, “
The explicit-jump immersed interface method: Finite difference methods for PDEs with piecewise smooth solutions
,”
SIAM J. Numer. Anal.
37
(
3
),
827
862
(
2000
).
50.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
(
1
),
477
539
(
1996
).
51.
S.
Xu
and
Z. J.
Wang
, “
An immersed interface method for simulating the interaction of a fluid with moving boundaries
,”
J. Comput. Phys.
216
(
2
),
454
493
(
2006
).
52.
W.
Yang
and
M. A.
Stremler
, “
Critical spacing of stationary tandem circular cylinders at Re = 100
,”
J. Fluids Struct.
89
,
49
60
(
2019
).
53.
M.
Zhao
and
L.
Cheng
, “
Two-dimensional numerical study of vortex shedding regimes of oscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers
,”
J. Fluid Mech.
751
,
1
37
(
2014
).
54.
S.
Zhao
, “
A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces
,”
J. Sci. Comput.
63
(
1
),
118
137
(
2015
).
55.
O.
Zhdanov
and
A.
Busse
, “
Angle of attack dependence of flow past cactus-inspired cylinders with a low number of ribs
,”
Eur. J. Mech.—B/Fluids
75
,
244
257
(
2019
).
56.
H.
Zhu
,
C.
Zhang
, and
W.
Liu
, “
Wake-induced vibration of a circular cylinder at a low Reynolds number of 100
,”
Phys. Fluids
31
(
7
),
073606
(
2019
).
You do not currently have access to this content.