Microfluidic design, fabrication, and experiments have developed rapidly, leading to lab-on-chip separation or fractionation. In this work, we design a continuous concentrator for macromolecular solutions. Our design relies on the analytical solutions for orientational diffusion under laminar pressure-driven slot flow through a microchannel [W. Stasiak and C. Cohen, “Dilute solutions of macromolecules in a rectilinear Poiseuille flow,” J. Chem. Phys. 78, 553 (1983)]. Using rigid dumbbell theory, we provide analytical solutions for the design of our microfluidic macromolecular hydrodynamic chromatography. We arrive at our design through the use of well-known confinement-driven composition profiles. Using a pair of razor-sharp blades, our design separates the slot flow into a symmetric core inner slot (concentrated) between two outer slots (diluted). We discover a minimum dimensionless blade leading edge separation for complete fractionation, and that this decreases with confinement and also decreases with dimensionless shear rate.

1.
P.
Sajeesh
and
A. K.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluid.
17
,
1
52
(
2014
).
2.
A. A. S.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
, “
Microfluidics for cell separation
,”
Med. Biol. Eng. Comput.
48
,
999
1014
(
2010
).
3.
X. D.
Nguyen
,
H. J.
Jeon
,
H. Y.
Kim
,
H. J.
Paik
,
J.
Huh
,
H. H.
Kim
, and
J. S.
Go
, “
Microfluidic separation of a soluble substance using transverse diffusion in a layered flow
,”
Micromachines
8
(
9
),
1
10
(
2016
).
4.
W.
Stasiak
and
C.
Cohen
, “
Dilute solutions of macromolecules in a rectilinear Poiseuille flow
,”
J. Chem. Phys.
78
(
1
),
553
559
(
1983
).
5.
T. G. G.
Alicia
,
C.
Yang
,
Z.
Wang
, and
N. T.
Nguyen
, “
Combinational concentration gradient confinement through stagnation flow
,”
Lab Chip
16
,
368
376
(
2016
).
6.
R. M.
Jendrejack
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
de Pablo
, “
Effect of confinement on DNA dynamics in microfluidic devices
,”
J. Chem. Phys.
119
(
2
),
1165
1173
(
2003
).
7.
J. P.
Hernández-Ortiz
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry
,”
Phys. Rev. Lett.
98
(
14
),
140602
(
2007
).
8.
G.
Lauricella
,
J.
Zhou
,
Q.
Luan
,
I.
Papautsky
, and
Z.
Peng
, “
Computational study of inertial migration of prolate particles in a straight rectangular channel
,”
Phys. Fluids
34
,
082021
(
2022
).
9.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evens
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,” Fortschr. Hochpoly. Forsch. (Advanced Polymer Science)
8
,
1
90
(
1971
).
10.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
2
.
11.
J. H.
Piette
,
C.
Saengow
, and
A. J.
Giacomin
, “
Zero-shear viscosity of Fraenkel dumbbell suspensions
,”
Phys. Fluids
32
(
6
),
063103
(
2020
).
12.
J. G.
Kirkwood
and
P. L.
Auer
, “
The viscoelastic properties of solutions of rod-like macromolecules
,”
J. Chem. Phys.
19
,
281
(
1951
).
13.
J. G.
Kirkwood
and
R. J.
Plock
, “
Non-Newtonian viscoelastic properties of rod-like macromolecules in solutions
,”
J. Chem. Phys.
24
,
665
(
1956
).
14.
E. W.
Paul
, “
Non-Newtonian viscoelastic properties of rodlike molecules in solution: Comment on a paper by Kirkwood and Plock
,”
J. Chem. Phys.
51
,
1271
(
1969
).
15.
E. W.
Paul
, “
Some non-equilibrium problems for dilute solutions of macromolecules. Part I: The plane polygonal polymer
,” Ph.D. thesis (
Department of Chemistry, University of Oregon
,
Eugene, OR
,
1970
).
16.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
(
7
),
074904
(
2014
).
17.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
).
18.
L.
Rems
,
D.
Kawale
,
L. J.
Lee
, and
P. E.
Boukany
, “
Flow of DNA in micro/nanofluidics: From fundamentals to applications
,”
Biomicrofluidics
10
,
043403
(
2016
).
19.
R. B.
Bird
and
A. J.
Giacomin
, “
Polymer fluid dynamics: Continuum and molecular approaches
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
479
507
(
2016
).
20.
N.
Thrien
,
B.
Coupal
, and
J. L.
Corneille
, “
Vérification expérimentale de l'épaisseur du film pour des liquides non-newtoniens s'écoulant par gravité sur un plan incliné
,”
Can. J. Chem. Eng.
48
,
17
(
1970
).
21.
G.
Astarita
,
G.
Marrucci
, and
G.
Palumbo
, “
Non-Newtonian gravity flow along inclined plane surfaces
,”
Ind. Eng. Chem. Fundam.
3
,
333
(
1964
).
22.
J. M.
Dealy
and
K. F.
Wissbrun
,
Melt Rheology and Its Role in Plastics Processing: Theory and Applications
(
Van Nostrand
,
New York
,
1990
).
23.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19–20
),
1081
1099
(
2011
). Errata: TABLE I of Ref. 24 and also Ref. 25.
24.
C.
Saengow
and
A. J.
Giacomin
, “
Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework
,”
Phys. Fluids
30
(
3
),
030703
(
2018
).
25.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Corrigenda: ‘Large-amplitude oscillatory shear flow from the corotational Maxwell model
,’ ”
J. Non-Newtonian Fluid Mech.
166
,
1081
1099
(
2011
). Corrigenda to Ref. 23.
26.
O. O.
Park
and
G. G.
Fuller
, “
Dynamics of rigid and flexible polymer chains in confined geometries. Part I: Steady simple shear flow
,”
J. Non-Newtonian Fluid Mech.
15
,
309
329
(
1984
).
27.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
, 1st ed. (
John Wiley and Sons, Inc
.,
New York
,
1977
), Vol.
2
.
28.
S. J.
Coombs
,
K.
Tontiwattanakul
, and
A. J.
Giacomin
, “
Design of Optimized Macromolecular Microfluidic Concentrator
,”
PRG Report No. 087, QU-CHEE-PRGTR—2022-87 (
Polymers Research Group, Chemical Engineering Department, Queen's University, Kingston,
2022
), pp.
0
18
.
29.
T.
Nisisako
,
T.
Ando
, and
T.
Hatsuzawa
, “
High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces
,”
Lab Chip
12
,
3426
3435
(
2012
).
30.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
(
8
),
087107
(
2019
).
31.
O.
Hassager
, “
Kinetic theory and rheology of bead-rod models for macromolecular solutions. II. Linear unsteady flow properties
,”
J. Chem. Phys.
60
(
10
),
4001
4008
(
1974
).
32.
J. H.
Piette
,
C.
Saengow
, and
A. J.
Giacomin
, “
Hydrodynamic interaction for rigid dumbbell suspensions in steady shear flow
,”
Phys. Fluids
31
(
5
),
053103
(
2019
).
You do not currently have access to this content.