In this paper, the log-conformation representation method (LCR) is applied in an orthogonal curvilinear coordinate system to study the Giesekus fluid flow in a curved duct. Derivations for evolution equations of LCR in this curvilinear coordinate system are presented. Secondary flow patterns and oscillation solutions are computed by using the collocation spectral method. The influence of a wide range of Dean number, Weissenberg number, and dimensionless mobility parameter α on fluid behaviors is studied. A six-cell secondary flow pattern is found under very low Dean number and relatively high Weissenberg number and α. Moreover, both Weissenberg number and α are able to facilitate the development of the secondary flow. In addition, simulations under critical Reynolds number for oscillation imply that Giesekus fluid flow with We0.1 is not able to retain a four-cell secondary flow pattern in a steady state, which is different from Newtonian fluids.

1.
K.
Javid
,
L.
Kolsi
,
K.
Al-Khaled
 et al, “
Biomimetic propulsion of viscoelastic nanoparticles in a curved pump with curvature and slip effects: Blood control bio-medical applications
,” in (
Waves in Random and Complex Media Taylor & Francis
,
2022
), pp.
1
18
.
2.
M. T.
Albdiry
and
M. F.
Almensory
, “
Failure analysis of drill string in petroleum industry: A review
,”
Eng. Fail Anal.
65
,
74
85
(
2016
).
3.
S. A.
Berger
,
L.
Talbot
, and
L. S.
Yao
, “
Flow in curved pipes
,”
Annu. Rev. Fluid Mech.
15
,
461
512
(
1983
).
4.
K.
Yoon
,
H. W.
Jung
, and
M. S.
Chun
, “
Secondary flow behavior of electrolytic viscous fluids with Bird–Carreau model in curved microchannels
,”
Rheol. Acta
56
,
915
926
(
2017
).
5.
W. R.
Dean
, “
Note on the motion of fluid in a curved pipe
,”
Philos. Mag.
4
,
208
223
(
1927
).
6.
H.
Topakoglu
and
M. A.
Ebadian
, “
Steady laminar flow of an incompressible viscous fluid in a curved pipe
,”
J. Math. Mech.
16
,
1231
1237
(
1967
).
7.
S. C. R.
Dennis
and
N. G.
Michael
, “
Dual solutions for steady laminar flow through a curved tube
,”
Q. J. Mech. Appl. Math.
35
,
305
324
(
1982
).
8.
M.
Norouzi
and
N.
Biglari
, “
An analytical solution for dean flow in curved ducts with rectangular cross section
,”
Phys. Fluids
25
,
053602
(
2013
).
9.
K. H.
Winters
, “
A bifurcation study of laminar flow in a curved tube of rectangular cross-section
,”
J. Fluid Mech.
180
,
343
369
(
1987
).
10.
J.
Zhang
,
B.
Zhang
, and
J.
Ju
, “
Fluid flow in a rotating curved rectangular duct
,”
Int. J. Heat Fluid Flow
22
,
583
592
(
2001
).
11.
S.
Thangam
and
N.
Hur
, “
Laminar secondary flows in curved rectangular ducts
,”
J. Fluid Mech.
217
,
421
440
(
1990
).
12.
K.
Yamamoto
,
X.
Wu
,
K.
Nozaki
 et al, “
Visualization of Taylor–Dean flow in a curved duct of square cross-section
,”
Fluid Dyn. Res.
38
,
1
(
2006
).
13.
Y.
Li
,
X.
Wang
,
B.
Zhou
 et al, “
Dean instability and secondary flow structure in curved rectangular ducts
,”
Int. J. Heat Fluid Flow
68
,
189
202
(
2017
).
14.
B.
Bara
,
K.
Nandakumar
, and
J.
Masliyah
, “
An experimental and numerical study of the Dean problem: Flow development towards two-dimensional multiple solutions
,”
J. Fluid Mech.
244
,
339
376
(
1992
).
15.
P. A.
Mees
,
K.
Nandakumar
, and
J.
Masliyah
, “
Steady spatial oscillations in a curved duct of square cross-section
,”
Phys. Fluids
8
,
3264
3270
(
1996
).
16.
L.
Rigo
,
D.
Biau
, and
X.
Gloerfelt
, “
Flow in a weakly curved square duct: Assessment and extension of Dean's model
,”
Phys. Rev. Fluids
6
,
024101
(
2021
).
17.
K.
Awasthi
,
D. S.
Reddy
, and
M. K.
Khan
, “
Performance comparison among the variants of curved serpentine coil
,”
Phys. Fluids
33
,
073604
(
2021
).
18.
A. M.
Robertson
and
S. J.
Muller
, “
Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section
,”
Int. J. Nonlinear Mech.
31
,
1
20
(
1996
).
19.
M.
Zhang
,
X.
Shen
,
J.
Ma
 et al, “
Galerkin method study on flow of Oldroyd-B fluids in curved circular cross-section pipes
,”
J. Zhejiang Univ. Sci.
7
,
263
270
(
2006
).
20.
M.
Norouzi
,
B.
Zare Vamerzani
,
M.
Davoodi
 et al, “
An exact analytical solution for creeping Dean flow of Bingham plastics through curved rectangular ducts
,”
Rheol. Acta
54
,
391
402
(
2015
).
21.
M.
Norouzi
,
M.
Davoodi
,
O.
Anwar Bég
 et al, “
Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing
,”
Int. J. Appl. Comput. Math.
4
,
108
(
2018
).
22.
Y. L.
Joo
and
E. S.
Shaqfeh
, “
The effects of inertia on the viscoelastic Dean and Taylor–Couette flow instabilities with application to coating flows
,”
Phys. Fluids A
4
,
2415
2431
(
1992
).
23.
M.
Zhang
,
X.
Shen
,
J.
Ma
 et al, “
Flow of Oldroyd-B fluid in rotating curved square ducts
,”
J. Hydrodyn.
19
,
36
41
(
2007
).
24.
L.
Helin
,
L.
Thais
, and
G.
Mompean
, “
Numerical simulation of viscoelastic Dean vortices in a curved duct
,”
J. Non-Newtonian Fluid Mech.
156
,
84
94
(
2009
).
25.
M.
Norouzi
,
M.
Kayhani
,
C.
Shu
 et al, “
Flow of second-order fluid in a curved duct with square cross-section
,”
J. Non-Newtonian Fluid Mech.
165
,
323
339
(
2010
).
26.
P.
Vafeas
,
P.
Bakalis
, and
P. K.
Papadopoulos
, “
Effect of the magnetic field on the ferrofluid flow in a curved cylindrical annular duct
,”
Phys. Fluids
31
,
117105
(
2019
).
27.
M.
Moyers-Gonzalez
and
I. A.
Frigaard
, “
Dean flow of a Bingham fluid in a curved rectangular duct
,”
J. Non-Newtonian Fluid Mech.
286
,
104440
(
2020
).
28.
X.
Sun
,
S.
Wang
, and
M.
Zhao
, “
Viscoelastic flow in a curved duct with rectangular cross section over a wide range of Dean number
,”
Phys. Fluids
33
,
033101
(
2021
).
29.
M.
Mahmoodi
,
M.
Nili-Ahmadabadi
,
A.
Minaeian
 et al, “
Secondary flow structures in developing viscoelastic fluid flow through curved ducts with square cross section
,”
Meccanica
56
,
2979
2999
(
2021
).
30.
R.
Keunings
, “
On the high Weissenberg number problem
,”
J. Non-Newtonian Fluid Mech.
20
,
209
226
(
1986
).
31.
R.
Sureshkumar
and
A. N.
Beris
, “
Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
60
,
53
80
(
1995
).
32.
B.
Yu
and
Y.
Kawaguchi
, “
Direct numerical simulation of viscoelastic drag-reducing flow: A faithful finite difference method
,”
J. Non-Newtonian Fluid Mech.
116
,
431
466
(
2004
).
33.
B.
Yu
and
Y.
Kawaguchi
, “
DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow
,”
Int. J. Heat Mass Transfer
48
,
4569
4578
(
2005
).
34.
T.
Vaithianathan
,
A.
Robert
,
J. G.
Brasseur
 et al, “
An improved algorithm for simulating three-dimensional, viscoelastic turbulence
,”
J. Non-Newtonian Fluid Mech.
140
,
3
22
(
2006
).
35.
R.
Fattal
and
R.
Kupferman
, “
Constitutive laws for the matrix-logarithm of the conformation tensor
,”
J. Non-Newtonian Fluid Mech.
123
,
281
285
(
2004
).
36.
G.
Bognar
and
Z.
Csati
, “
Spectral method for time dependent Navier–Stokes equation
,”
Miskolc Math. Notes
17
,
43
56
(
2016
).
37.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
2000
).
38.
R.
Peyret
,
Spectral Methods for Incompressible Viscous Flow
(
Springer Science & Business Media
,
2002
), Vol.
148
.
39.
U.
Ehrenstein
and
R.
Peyret
, “
A Chebyshev collocation method for the Navier–Stokes equations with application to double-diffusive convection
,”
Int. J. Numer. Methods Fluids
9
,
427
452
(
1989
).
40.
M.
Pourjafar
and
K.
Sadeghy
, “
Dean instability of Giesekus fluids in azimuthal flow between two fixed, infinitely-long, concentric cylinders at arbitrary gap spacings
,”
J. Non-Newtonian Fluid Mech.
177
,
54
63
(
2012
).
41.
W.
Zhang
,
J.
Li
,
Q.
Wang
 et al, “
Comparative study on numerical performances of log-conformation representation and standard conformation representation in the simulation of viscoelastic fluid turbulent drag-reducing channel flow
,”
Phys. Fluids
33
,
023101
(
2021
).
You do not currently have access to this content.