Lubrication is essential to minimize wear and friction between contacting surfaces in relative motion. Oil based lubricants are often enhanced via polymer additives to minimize self-degradation due to the shear thinning effect. Therefore, an accurate estimate of the load carrying capacity of the thin lubricating film requires careful modeling of shear thinning. Available models such as the generalized Reynolds equation (GR) and the approximate shear distribution have drawbacks such as large computational time and poor accuracy, respectively. In this work, we present a new approach, i.e., the modified viscosity (MV) model, based on calculating the strain rate only in one point along the vertical direction. We investigate, for both MV and GR, the load, the maximum pressure, and the computational time for (i) sliding (non-cavitating) contacts, (ii) cavitating, and (iii) squeezing contacts. We observe that the computational time is reduced (i) considerably for non-cavitating sliding and rolling contacts and (ii) by several orders of magnitudes for cavitating and squeezing contacts. Furthermore, the accuracy of MV is comparable with the GR model within an appreciable range of bearing numbers. Finally, for each type of boundary motion, we have determined the optimal vertical location to calculate the shear strain rate for MV; while this optimal value is close to half the height of the contact for sliding configurations, for rolling dominated and squeezing contacts it is around one quarter (or three quarter) of their height. We finally provide an analysis to a priori estimate the optimal location of the strain rate.

1.
R. M.
Mortier
,
S. T.
Orszulik
, and
M. F.
Fox
,
Chemistry and Technology Lubricants
(
Springer
,
2010
), Vol.
107115
.
2.
N. S.
Ahmed
and
A. M.
Nassar
, “
Lubricating oil additives
,” in
Tribology—Lubricants and Lubrication
(
IntechOpen
,
2011
), pp.
249
626
.
3.
Y.-R.
Jeng
,
B. J.
Hamrock
, and
D. E.
Brewe
, “
Piezoviscous effects in nonconformal contacts lubricated hydrodynamically
,”
ASLE Trans.
30
,
452
464
(
1986
).
4.
P. W.
Bridgman
,
The Effect of Pressure on the Viscosity of Forty-Three Pure Liquids
(
Harvard University Press
,
2013
).
5.
C.
Barus
, “
Note on the dependence of viscosity on pressure and temperature
,”
Proc. Am. Acad. Arts Sci.
27
,
13
18
(
1891
).
6.
B. J.
Hamrock
,
S. R.
Schmid
, and
B. O.
Jacobson
,
Fundamentals of Fluid Film Lubrication
(
CRC Press
,
2004
).
7.
Y.
Liu
,
Q. J.
Wang
,
S.
Bair
, and
P.
Vergne
, “
A quantitative solution for the full shear-thinning EHL point contact problem including traction
,”
Tribol. Lett.
28
,
171
181
(
2007
).
8.
A. Z.
Szeri
,
Fluid Film Lubrication
(
Cambridge University Press
,
2010
).
9.
W.-Z.
Wang
,
Y.-C.
Liu
,
H.
Wang
, and
Y.-Z.
Hu
, “
A computer thermal model of mixed lubrication in point contacts
,”
J. Tribol.
126
,
162
170
(
2004
).
10.
D.
Dowson
, “
A generalized Reynolds equation for fluid-film lubrication
,”
Int. J. Mech. Sci.
4
,
159
170
(
1962
).
11.
Y.
Peiran
and
W.
Shizhu
, “
A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication
,”
J. Tribol.
112
,
631
636
(
1990
).
12.
R.
Hewson
,
N.
Kapur
, and
P.
Gaskell
, “
Analytical and numerical solutions of thin lubricating films for differing shear-thinning viscosity models
,”
Proc. Inst. Mech. Eng., Part J
221
,
355
366
(
2007
).
13.
A.
Rastogi
and
R.
Gupta
, “
Accounting for lubricant shear thinning in the design of short journal bearings
,”
J. Rheol.
35
,
589
603
(
1991
).
14.
T. F.
Conry
,
S.
Wang
, and
C.
Cusano
, “
A Reynolds–Eyring equation for elastohydrodynamic lubrication in line contacts
,”
J. Tribol.
109
,
648
654
(
1987
).
15.
J.
Shukla
,
S.
Kumar
, and
P.
Chandra
, “
Generalized Reynolds equation with slip at bearing surfaces: Multiple-layer lubrication theory
,”
Wear
60
,
253
268
(
1980
).
16.
R.
Wolff
and
A.
Kubo
, “
A generalized non-Newtonian fluid model incorporated into elastohydrodynamic lubrication
,”
J. Tribol.
118
,
74
82
(
1996
).
17.
M.
Kumar
and
P. K.
Mondal
, “
Bejan's flow visualization of buoyancy-driven flow of a hydromagnetic Casson fluid from an isothermal wavy surface
,”
Phys. Fluids
33
,
093113
(
2021
).
18.
P.
Kaushik
,
P. K.
Mondal
, and
S.
Chakraborty
, “
Flow dynamics of a viscoelastic fluid squeezed and extruded between two parallel plates
,”
J. Non-Newtonian Fluid Mech.
227
,
56
64
(
2016
).
19.
L.
Biancofiore
,
L.
Brandt
, and
T. A.
Zaki
, “
Streak instability in viscoelastic Couette flow
,”
Phys. Rev. Fluids
2
,
043304
(
2017
).
20.
M. S.
Agrawal
,
H. S.
Gaikwad
,
P. K.
Mondal
, and
G.
Biswas
, “
Analysis and experiments on the spreading dynamics of a viscoelastic drop
,”
Appl. Math. Modell.
75
,
201
209
(
2019
).
21.
M.
Kumar
and
P. K.
Mondal
, “
Buoyancy driven flow of a couple stress fluid from an isothermal vertical plate: The role of spatially periodic magnetic field
,”
Phys. Scr.
96
,
125014
(
2021
).
22.
B.
Bou-Said
and
P.
Ehret
, “
Inertia and shear-thinning effects on bearing behavior with impulsive loads
,”
J. Tribol.
116
,
535
540
(
1994
).
23.
T.
Tian
,
V. W.
Wong
, and
J. B.
Heywood
, “
A piston ring-pack film thickness and friction model for multigrade oils and rough surfaces
,”
SAE Trans.
105
,
1783
1795
(
1996
).
24.
C.
Arcoumanis
,
P.
Ostovar
, and
R.
Mortier
, “
Mixed lubrication modelling of Newtonian and shear thinning liquids in a piston-ring configuration
,”
SAE Trans.
1997
,
1306
1331
.
25.
R.
Taylor
, “
The inclusion of lubricant shear thinning in journal bearing models
,”
Tribol. Ser.
36
,
611
619
(
1999
).
26.
R.
Taylor
, “
The inclusion of lubricant shear thinning in the short bearing approximation
,”
Proc. Inst. Mech. Eng., Part J
213
,
35
46
(
1999
).
27.
H.
Hirani
,
K.
Athre
, and
S.
Biswas
, “
Lubricant shear thinning analysis of engine journal bearings
,”
Tribol. Trans.
44
,
125
131
(
2001
).
28.
S.
Akbarzadeh
and
M. M.
Khonsari
, “
Performance of spur gears considering surface roughness and shear thinning lubricant
,”
J. Tribol.
130
,
021503
(
2008
).
29.
R. I.
Taylor
, “
Tribology and energy efficiency: From molecules to lubricated contacts to complete machines
,”
Faraday Discuss.
156
,
361
382
(
2012
).
30.
L.
San Andrés
,
V.
Barbarie
,
A.
Bhattacharya
, and
K.
Gjika
, “
On the effect of thermal energy transport to the performance of (semi) floating ring bearing systems for automotive turbochargers
,”
J. Eng. Gas Turbines Power
134
,
102507
(
2012
).
31.
D. E.
Sander
,
H.
Allmaier
,
H.-H.
Priebsch
,
F. M.
Reich
,
M.
Witt
,
T.
Füllenbach
,
A.
Skiadas
,
L.
Brouwer
, and
H.
Schwarze
, “
Impact of high pressure and shear thinning on journal bearing friction
,”
Tribol. Int.
81
,
29
37
(
2015
).
32.
C.
Gu
,
X.
Meng
,
D.
Zhang
, and
Y.
Xie
, “
Transient analysis of the textured journal bearing operating with the piezoviscous and shear-thinning fluids
,”
J. Tribol.
139
,
051708
(
2017
).
33.
P.
Wang
,
T.
Keith
, Jr
, and
K.
Vaidyanathan
, “
Non-Newtonian effects on the performance of dynamically loaded elliptical journal bearings using a mass-conserving finite element cavitation algorithm
,”
Tribol. Trans.
44
,
533
542
(
2001
).
34.
J.
Zhu
,
H.
Qian
,
H.
Wen
,
L.
Zheng
, and
H.
Zhu
, “
Analysis of misaligned journal bearing lubrication performance considering the effect of lubricant couple stress and shear thinning
,”
J. Mech.
37
,
282
290
(
2021
).
35.
E.
Tomanik
,
F. J.
Profito
, and
D. C.
Zachariadis
, “
Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces
,”
Tribol. Int.
59
,
90
96
(
2013
).
36.
L.
Bertocchi
,
D.
Dini
,
M.
Giacopini
,
M. T.
Fowell
, and
A.
Baldini
, “
Fluid film lubrication in the presence of cavitation: A mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids
,”
Tribol. Int.
67
,
61
71
(
2013
).
37.
V.
Jadhao
and
M. O.
Robbins
, “
Rheological properties of liquids under conditions of elastohydrodynamic lubrication
,”
Tribol. Lett.
67
,
66
(
2019
).
38.
S.
Bair
and
W. O.
Winer
, “
A rheological model for elastohydrodynamic contacts based on primary laboratory data
,”
J. Lubr. Technol.
101
,
258
264
(
1979
).
39.
M.
Khonsari
and
D.
Hua
, “
Generalized non-Newtonian elastohydrodynamic lubrication
,”
Tribol. Int.
26
,
405
411
(
1993
).
40.
C. H.
Venner
and
J.
Bos
, “
Effects of lubricant compressibility on the film thickness in EHL line and circular contacts
,”
Wear
173
,
151
165
(
1994
).
41.
M. K.
Ghosh
and
B. C.
Majumdar
, “
Dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings
,”
J. Lubr. Technol.
104
,
491
496
(
1982
).
42.
R.
Ausas
,
P.
Ragot
,
J.
Leiva
,
M.
Jai
,
G.
Bayada
, and
G. C.
Buscaglia
, “
The impact of the cavitation model in the analysis of microtextured lubricated journal bearings
,”
J. Tribol.
129
,
868
875
(
2007
).
43.
L.
Biancofiore
,
M.
Giacopini
, and
D.
Dini
, “
Interplay between wall slip and cavitation: A complementary variable approach
,”
Tribol. Int.
137
,
324
339
(
2019
).
44.
T.
Woloszynski
,
P.
Podsiadlo
, and
G. W.
Stachowiak
, “
Efficient solution to the cavitation problem in hydrodynamic lubrication
,”
Tribol. Lett.
58
,
18
(
2015
).
45.
M.
Giacopini
,
M. T.
Fowell
,
D.
Dini
, and
A.
Strozzi
, “
A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation
,”
J. Tribol.
132
,
041702
(
2010
).
46.
A. A.
Lubrecht
,
W. E.
ten Napel
, and
R.
Bosma
, “
Multigrid, an alternative method of solution for two-dimensional elastohydrodynamically lubricated point contact calculations
,”
J. Tribol.
109
,
437
443
(
1987
).
47.
A. A.
Lubrecht
,
C. H.
Venner
,
W. E.
ten Napel
, and
R.
Bosma
, “
Film thickness calculations in elastohydrodynamically lubricated circular contacts, using a multigrid method
,”
J. Tribol.
110
,
503
507
(
1988
).
48.
M.
Arghir
,
A.
Alsayed
, and
D.
Nicolas
, “
The finite volume solution of the Reynolds equation of lubrication with film discontinuities
,”
Int. J. Mech. Sci.
44
,
2119
2132
(
2002
).
49.
R. F.
Ausas
,
M.
Jai
, and
G. C.
Buscaglia
, “
A mass-conserving algorithm for dynamical lubrication problems with cavitation
,”
J. Tribol.
131
,
031702
(
2009
).
50.
S.
Gamaniel
,
D.
Dini
, and
L.
Biancofiore
, “
The effect of fluid viscoelasticity in lubricated contacts in the presence of cavitation
,”
Tribol. Int.
160
,
107011
(
2021
).
51.
J. H.
Ferziger
,
M.
Perić
, and
R. L.
Street
,
Computational Methods for Fluid Dynamics
(
Springer
,
2002
), Vol.
3
.
52.
H. G.
Elrod
, “
A cavitation algorithm
,”
J. Lubr. Technol.
103
,
350
354
(
1981
).
53.
D.
Vijayaraghavan
and
T. G.
Keith
, “
An efficient, robust, and time accurate numerical scheme applied to a cavitation algorithm
,”
J. Tribol.
112
,
44
51
(
1990
).
54.
W. L.
Briggs
,
V. E.
Henson
, and
S. F.
McCormick
,
A Multigrid Tutorial
(
SIAM
,
2000
).
55.
H. A.
Van der Vorst
, “
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comput.
13
,
631
644
(
1992
).
56.
T.
Almqvist
and
R.
Larsson
, “
Some remarks on the validity of Reynolds equation in the modeling of lubricant film flows on the surface roughness scale
,”
J. Tribol.
126
,
703
710
(
2004
).
57.
P.
Ehret
,
D.
Dowson
, and
C. M.
Taylor
, “
On lubricant transport conditions in elastohydrodynamic conjuctions
,”
Proc. R. Soc. London, Ser. A: Math., Phys. Eng. Sci.
454
,
763
787
(
1998
).
58.
A.
Waseem
,
I.
Temizer
,
J.
Kato
, and
K.
Terada
, “
Micro-texture design and optimization in hydrodynamic lubrication via two-scale analysis
,”
Struct. Multidiscip. Optim.
56
,
227
248
(
2017
).
59.
C.
Putignano
,
L.
Afferrante
,
G.
Carbone
, and
G.
Demelio
, “
A new efficient numerical method for contact mechanics of rough surfaces
,”
Int. J. Solids Struct.
49
,
338
343
(
2012
).
60.
S.
Balasubramanian
,
P.
Kaushik
, and
P. K.
Mondal
, “
Dynamics of viscoelastic fluid in a rotating soft microchannel
,”
Phys. Fluids
32
,
112003
(
2020
).
61.
S. R.
Gorthi
,
S. K.
Meher
,
G.
Biswas
, and
P. K.
Mondal
, “
Capillary imbibition of non-Newtonian fluids in a microfluidic channel: Analysis and experiments
,”
Proc. R. Soc. A
476
,
20200496
(
2020
).
62.
P.
Abhimanyu
,
P.
Kaushik
,
P. K.
Mondal
, and
S.
Chakraborty
, “
Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena
,”
J. Non-Newtonian Fluid Mech.
231
,
56
67
(
2016
).
63.
H.
Ahmed
and
L.
Biancofiore
, “
A new approach for modeling viscoelastic thin film lubrication
,”
J. Non-Newtonian Fluid Mech.
292
,
104524
(
2021
).
You do not currently have access to this content.