The European H2020 project SLOWD is aimed to investigate the fuel sloshing damping effect to reduce the design loads on aircraft wings. Wings house the fuel tanks and are highly flexible structures that can significantly deform under gust loads. In the recent experiment by Martinez-Carrascal and González-Gutiérrez [“Experimental study of the liquid damping effects on a SDOF vertical sloshing tank,” J. Fluids Struct. 100, 103172 (2021)], the complex problem of the fuel sloshing inside a flexible wing structure was significantly simplified by considering a partially filled vertically heaving tank attached to a system of springs. In the present research, a smoothed particle hydrodynamic model was adopted to evaluate the energy dissipated in the three-dimensional sloshing flow obtained using the same tank motions. From a numerical point of view, the simulation of such a violent flow is rather challenging, the involved vertical accelerations being as large as 10 g. The resulting flow is extremely complex because of the severe turbulence developed, the violent impacts, and the considerable fragmentation of the air–liquid interface. The role of the viscosity is investigated by taking into account two different liquids. Finally, some comparisons between three-dimensional results and previous two-dimensional studies are also discussed.

1.
R.
Ibrahim
,
Liquid Sloshing Dynamics: Theory and Applications
(
Cambridge University Press
,
2005
).
2.
O.
Faltinsen
and
A.
Timokha
,
Sloshing
(
Cambridge University Press
,
Cambridge
,
2009
), Vol.
577
.
3.
Y.
Tamura
,
K.
Fujii
,
T.
Ohtsuki
,
T.
Wakahara
, and
R.
Kohsaka
, “
Effectiveness of tuned liquid dampers under wind excitation
,”
Eng. Struct.
17
,
609
(
1995
).
4.
T.
Novo
,
H.
Varum
,
F.
Teixeira-Dias
,
H.
Rodrigues
,
M.
Silva
,
A.
Costa
, and
L.
Guerreiro
, “
Tuned liquid dampers simulation for earthquake response control of buildings
,”
Bull. Earthquake Eng.
12
,
1007
(
2014
).
5.
A.
Kareem
,
T.
Kijewski
, and
Y.
Tamura
, “
Mitigation of motions of tall buildings with specific examples of recent applications
,”
Wind Struct.
2
,
201
(
1999
).
6.
M.
Yamamoto
and
T.
Sone
, “
Behavior of active mass damper (AMD) installed in high-rise building during 2011 earthquake off Pacific coast of Tohoku and verification of regenerating system of AMD based on monitoring
,”
Struct. Control Health Monit.
21
,
634
(
2014
).
7.
D.
Bass
, “
Roll stabilization for small fishing vessels using paravanes and anti-roll tanks
,”
Mar. Technol. SNAME News
35
,
74
(
1998
).
8.
E.
Graham
and
A.
Rodriguez
, “
The characteristics of fuel motion which affect airplane dynamics
,”
J. Appl. Mech.
19
,
381
(
1952
).
9.
H.
Abramson
, “The dynamic behavior of liquids in moving containers,” NASA Special Publication SP-106 (NASA, 1966).
10.
M.
Cooker
, “
Water waves in a suspended container
,”
Wave Motion
20
,
385
(
1994
).
11.
M.
Cooker
, “
Wave energy losses from a suspended container
,”
Phys. Fluids
8
,
283
(
1996
).
12.
M.
Perlin
,
W.
Choi
, and
Z.
Tian
, “
Breaking waves in deep and intermediate waters
,”
Annu. Rev. Fluid Mech.
45
,
115
(
2013
).
13.
J.
Frandsen
, “
Numerical predictions of tuned liquid tank structural systems
,”
J. Fluids Struct.
20
,
309
(
2005
).
14.
H.
Ardakani
and
T.
Bridges
, “
Dynamic coupling between shallow-water sloshing and horizontal vehicle motion
,”
Eur. J. Appl. Math.
21
,
479
(
2010
).
15.
H.
Ardakani
,
T.
Bridges
, and
M.
Turner
, “
Resonance in a model for Cooker's sloshing experiment
,”
Eur. J. Mech.-B/Fluids
36
,
25
(
2012
).
16.
Z.
Demirbilek
, “
Energy dissipation in sloshing waves in a rolling rectangular tank. I. Mathematical theory
,”
Ocean Eng.
10
,
347
(
1983
).
17.
Z.
Demirbilek
, “
Energy dissipation in sloshing waves in a rolling rectangular tank. II. Solution method and analysis of numerical technique
,”
Ocean Eng.
10
,
359
(
1983
).
18.
Z.
Demirbilek
, “
Energy dissipation in sloshing waves in a rolling rectangular tank. III. Results and applications
,”
Ocean Eng.
10
,
375
(
1983
).
19.
D.
Reed
,
J.
Yu
,
H.
Yeh
, and
S.
Gardarsson
, “
Investigation of tuned liquid dampers under large amplitude excitation
,”
J. Eng. Mech.
124
,
405
(
1998
).
20.
A.
Marsh
,
M.
Prakash
,
S.
Semercigil
, and
Ö.
Turan
, “
An investigation and modelling of energy dissipation through sloshing in an egg-shaped shell
,”
J. Sound Vib.
330
,
6287
(
2011
).
21.
B.
Bouscasse
,
A.
Colagrossi
,
A.
Souto-Iglesias
, and
J.
Cercos-Pita
, “
Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation
,”
Phys. Fluids
26
,
033103
(
2014
).
22.
B.
Bouscasse
,
A.
Colagrossi
,
A.
Souto-Iglesias
, and
J.
Cercos-Pita
, “
Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. II. Experimental investigation
,”
Phys. Fluids
26
,
033104
(
2014
).
23.
F.
Gambioli
and
A.
Malan
, in
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD)
(
2017
).
24.
H.
Bredmose
,
M.
Brocchini
,
D.
Peregrine
, and
L.
Thais
, “
Experimental investigation and numerical modelling of steep forced water waves
,”
J. Fluid Mech.
490
,
217
(
2003
).
25.
F.
Gambioli
and
A.
Malan
, in
Proceedings of the 4th Spheric Workshop
,
Nantes
,
France
(Ecole Centrale de Nantes,
2009
), Vol.
247
.
26.
B.
Titurus
,
J. E.
Cooper
,
F.
Saltari
,
F.
Mastroddi
, and
F.
Gambioli
, in
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics
,
Savannah, GA
(
2019
), Vol.
139
.
27.
L.
Constantin
,
J.
De Courcy
,
B.
Titurus
,
T. C.
Rendall
, and
J.
Cooper
, “
Analysis of damping from vertical sloshing in a SDOF system
,”
Mech. Syst. Signal Process.
152
,
107452
(
2021
).
28.
L.
Constantin
,
J.
De Courcy
,
B.
Titurus
,
T.
Rendall
, and
J.
Cooper
, “
Sloshing induced damping across Froude numbers in a harmonically vertically excited system
,”
J. Sound Vib.
510
,
116302
(
2021
).
29.
J.
Martinez-Carrascal
and
L.
González-Gutiérrez
, “
Experimental study of the liquid damping effects on a SDOF vertical sloshing tank
,”
J. Fluids Struct.
100
,
103172
(
2021
).
30.
F.
Gambioli
,
A.
Chamos
,
S.
Jones
,
P.
Guthrie
,
J.
Webb
,
J.
Levenhagen
,
P.
Behruzi
,
F.
Mastroddi
,
A.
Malan
,
S.
Longshaw
 et al, in
Proceedings of the 8th Transport Research Arena TRA, 27–30 April
2020,
Helsinki
,
Finland
(Finnish Transport and Communications Agency Traficom,
2020
).
31.
R.
Broglia
and
D.
Durante
, “
Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method
,”
Comput. Mech.
62
,
421
(
2018
).
32.
S.
Marrone
,
A.
Colagrossi
,
F.
Gambioli
, and
L.
González-Gutiérrez
, “
Numerical study on the dissipation mechanisms in sloshing flows induced by violent and high-frequency accelerations. I. Theoretical formulation and numerical investigation
,”
Phys. Rev. Fluids
6
,
114801
(
2021
).
33.
S.
Marrone
,
A.
Colagrossi
,
J.
Calderon-Sanchez
, and
J.
Martinez-Carrascal
, “
Numerical study on the dissipation mechanisms in sloshing flows induced by violent and high-frequency accelerations. II. Comparison against experimental data
,”
Phys. Rev. Fluids
6
,
114802
(
2021
).
34.
P.
Sun
,
A.
Colagrossi
,
S.
Marrone
,
M.
Antuono
, and
A.
Zhang
, “
A consistent approach to particle shifting in the δ-Plus-SPH model
,”
Comput. Methods Appl. Mech. Eng.
348
,
912
(
2019
).
35.
A. D.
Mascio
,
M.
Antuono
,
A.
Colagrossi
, and
S.
Marrone
, “
Smoothed particle hydrodynamics method from a large eddy simulation perspective
,”
Phys. Fluids
29
,
035102
(
2017
).
36.
M.
Antuono
,
S.
Marrone
,
A. D.
Mascio
, and
A.
Colagrossi
, “
Smoothed particle hydrodynamics method from a large eddy simulation perspective. Generalization to a quasi-Lagrangian model
,”
Phys. Fluids
33
,
015102
(
2021
).
37.
E.
Lamarre
and
W.
Melville
, “
Air entrainment and dissipation in breaking waves
,”
Nature
351
,
469
(
1991
).
38.
S.
Marrone
,
A.
Colagrossi
,
A. D.
Mascio
, and
D. L.
Touzé
, “
Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling
,”
Phys. Rev. E
93
,
053113
(
2016
).
39.
S.
Gu
,
W.
Zheng
,
H.
Wu
,
C.
Chen
, and
S.
Shao
, “
DualSPHysics simulations of spillway hydraulics: A comparison between single- and two-phase modelling approaches
,”
J. Hydraulic Res.
60
,
835
852
(
2022
).
40.
J.
Calderon-Sanchez
,
J.
Martinez-Carrascal
,
L.
Gonzalez-Gutierrez
, and
A.
Colagrossi
, “
A global analysis of a coupled violent vertical sloshing problem using an SPH methodology
,”
Eng. Appl. Comput. Fluid Mech.
15
,
865
(
2021
).
41.
S.
Marrone
,
A.
Colagrossi
,
A. D.
Mascio
, and
D. L.
Touzé
, “
Prediction of energy losses in water impacts using incompressible and weakly compressible models
,”
J. Fluids Struct.
54
,
802
(
2015
).
42.
D.
Meringolo
,
A.
Colagrossi
,
S.
Marrone
, and
F.
Aristodemo
, “
On the filtering of acoustic components in weakly-compressible SPH simulations
,”
J. Fluids Struct.
70
,
1
(
2017
).
43.
E. D.
Christensen
and
R.
Deigaard
, “
Large eddy simulation of breaking waves
,”
Coastal Eng.
42
,
53
(
2001
).
44.
E. D.
Christensen
, “
Large eddy simulation of spilling and plunging breakers
,”
Coastal Eng.
53
,
463
(
2006
).
45.
P.
Lubin
and
S.
Glockner
, “
Numerical simulations of three-dimensional plunging breaking waves: Generation and evolution of aerated vortex filaments
,”
J. Fluid Mech.
767
,
364
(
2015
).
46.
E.
Labourasse
,
D.
Lacanette
,
A.
Toutant
,
P.
Lubin
,
S.
Vincent
,
O.
Lebaigue
,
J.-P.
Caltagirone
, and
P.
Sagaut
, “
Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests
,”
Int. J. Multiphase Flow
33
(
1
),
1
(
2007
).
47.
D.
Meringolo
,
S.
Marrone
,
A.
Colagrossi
, and
Y.
Liu
, “
A dynamic δ-SPH model: How to get rid of diffusive parameter tuning
,”
Comput. Fluids
179
,
334
(
2019
).
48.
M.
Antuono
,
P.
Sun
,
S.
Marrone
, and
A.
Colagrossi
, “
The δ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique
,”
Comput. Fluids
216
,
104806
(
2021
).
49.
M.
Antuono
,
A.
Colagrossi
, and
S.
Marrone
, “
Numerical diffusive terms in weakly-compressible SPH schemes
,”
Comput. Phys. Commun.
183
,
2570
(
2012
).
50.
M.
Antuono
,
A.
Colagrossi
,
S.
Marrone
, and
D.
Molteni
, “
Free-surface flows solved by means of SPH schemes with numerical diffusive terms
,”
Comput. Phys. Commun.
181
,
532
(
2010
).
51.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
,
99
(
1963
).
52.
C.
Bailly
and
G.
Comte-Bellot
, “
The dynamics of isotropic turbulence
,” in
Turbulence
(
Springer International Publishing
,
2015
), pp.
179
210
.
53.
E. Y.
Lo
and
S.
Shao
, “
Simulation of near-shore solitary wave mechanics by an incompressible SPH method
,”
Appl. Ocean Res.
24
,
275
(
2002
).
54.
B. D.
Rogers
and
R. A.
Dalrymple
, in
Coastal Engineering 2004
(
World Scientific
,
2005
), pp.
415
427
.
55.
J.
Monaghan
, “
SPH without a tensile instability
,”
J. Comput. Phys.
159
,
290
(
2000
).
56.
A.
Khayyer
,
H.
Gotoh
, and
Y.
Shimizu
, “
Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
,”
J. Comput. Phys.
332
,
236
(
2017
).
57.
J.
Michel
,
M.
Antuono
,
S.
Marrone
, and
G.
Oger
, in
Proceedings of the 16th International SPHERIC Workshop
(
Istituto Nazionale di Geofisica e Vulcanologia
,
2022
).
58.
A.
Colagrossi
,
E.
Rossi
,
S.
Marrone
, and
D. L.
Touzé
, “
Particle methods for viscous flows: analogies and differences between the SPH and DVH methods
,”
Commun. Comput. Phys.
20
,
660
(
2016
).
59.
A.
Colagrossi
,
M.
Antuono
, and
D.
Le Touzé
, “
Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model
,”
Phys. Rev. E
79
,
056701
(
2009
).
60.
M.
Antuono
,
S.
Marrone
,
A.
Colagrossi
, and
B.
Bouscasse
, “
Energy balance in the δ-SPH scheme
,”
Comput. Methods Appl. Mech. Eng.
289
,
209
(
2015
).
61.
J.
Cercos-Pita
,
M.
Antuono
,
A.
Colagrossi
, and
A.
Souto-Iglesias
, “
SPH energy conservation for fluid–solid interactions
,”
Comput. Methods Appl. Mech. Eng.
317
,
771
(
2017
).
62.
S. B.
Pope
,
Turbulent Flows
(
IOP Publishing
,
2001
).
63.
F.
Gambioli
,
R. A.
Usach
,
J.
Kirby
,
T.
Wilson
, and
P.
Behruzi
, in
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics
,
Savannah, GA
(
2019
), Vol.
139
.
64.
C.
Pilloton
,
A.
Bardazzi
,
A.
Colagrossi
, and
S.
Marrone
, “
SPH method for long-time simulations of sloshing flows in LNG tanks
,”
Eur. J. Mech. -B/Fluids
93
,
65
(
2022
).
65.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science and Business Media
,
2006
).
66.
A.
Aprovitola
and
F.
Denaro
, “
On the application of congruent upwind discretizations for large eddy simulations
,”
J. Comput. Phys.
194
,
329
(
2004
).
67.
F.
Saltari
,
M.
Pizzoli
,
G.
Coppotelli
,
F.
Gambioli
,
J. E.
Cooper
, and
F.
Mastroddi
, “
Experimental characterisation of sloshing tank dissipative behaviour in vertical harmonic excitation
,”
J. Fluids Struct.
109
,
103478
(
2022
).
You do not currently have access to this content.