Diagnostic investigations of aneurysm, hemorrhagic stroke, and other asymptomatic cardiovascular diseases and neurological disorders due to the flow choking (biofluid/boundary layer blockage persuaded flow choking) phenomenon in the circulatory system of humans and animals on the Earth and in the human spaceflight are active research topics of topical interest {Kumar et al., “boundary layer blockage persuaded flow choking leads to hemorrhagic stroke and other neurological disorders in earth and human spaceflight,” Paper presented at the Basic Cardiovascular Sciences Conference, 23–25 August 2021 (American Stroke Association, 2021) [Circ. Res. 129, AP422 (2021)] and “Lopsided blood-thinning drug increases the risk of internal flow choking and shock wave generation causing asymptomatic stroke,” in International Stroke Conference, 19–20 March 2021 (American Stroke Association, 2021) [Stroke 52, AP804 (2021)]}. The theoretical concept of flow choking [Kumar et al., “Lopsided blood-thinning drug increases the risk of internal flow choking leading to shock wave generation causing asymptomatic cardiovascular disease,” Global Challenges 5, 2000076 (2021); “Discovery of nanoscale boundary layer blockage persuaded flow choking in cardiovascular system—Exact prediction of the 3D boundary-layer-blockage factor in nanotubes,” Sci. Rep. 11, 15429 (2021); and “The theoretical prediction of the boundary layer blockage and external flow choking at moving aircraft in ground effects,” Phys. Fluids 33(3), 036108 (2021)] in the cardiovascular system (CVS) due to gas embolism is established herein through analytical, in vitro (Kumar et al., “Nanoscale flow choking and spaceflight effects on cardiovascular risk of astronauts—A new perspective,” AIAA Paper No. 2021-0357, 2021), in silico (Kumar et al., “Boundary layer blockage, Venturi effect and cavitation causing aerodynamic choking and shock waves in human artery leading to hemorrhage and massive heart attack—A new perspective,” AIAA Paper No. 2018-3962, 2018), and in vivo animal methodology [Jayaraman et al., “Animal in vivo: The proof of flow choking and bulging of the downstream region of the stenosis artery due to air embolism,” Paper presented at the Basic Cardiovascular Sciences Conference, 25–28 July 2022 (American Heart Association, 2022)]. The boundary layer blockage persuaded flow choking phenomenon is a compressible viscous flow effect, and it arises at a critical pressure ratio in continuum/non-continuum real-world yocto to yotta scale flow systems and beyond [Kumar et al., “Universal benchmark data of the three-dimensional boundary layer blockage and average friction coefficient for in silico code verification,” Phys. Fluids 34(4), 041301 (2022)]. The closed-form analytical models, capable of predicting the flow choking in CVS, developed from the well-established compressible viscous flow theory are reviewed and presented herein. The lower-critical flow-choking index of the healthy subject (human being/animal) is predicted through the speciation analysis of blood. The upper-critical flow-choking index is predicted from the specific heat of blood at constant pressure (Cp) and constant volume (Cv), estimated using the Differential Scanning Calorimeter. These flow-choking indexes, highlighted in terms of systolic-to-diastolic blood pressure ratio (SBP/DBP), are exclusively controlled by the biofluid/blood heat capacity ratio (BHCR = Cp/Cv). An in vitro study shows that nitrogen (N2), oxygen (O2), and carbon dioxide (CO2) gases are predominant in fresh-blood samples of the healthy humans and Guinea pigs at a temperature range of 37–40 °C (98.6–104 °F) causing gas embolism. In silico results demonstrated the existence of the biofluid/boundary layer blockage persuaded flow choking, stream tube flow choking, shock wave generation, and pressure overshoot in the downstream region of simulated arteries (with and without stenosis), at a critical pressure ratio, due to gas embolism. The flow choking followed by aneurysm (i.e., bulging of the downstream region of the stenosis artery due to shock wave generation) due to air embolism is demonstrated through small animal in vivo studies. We could corroborate herein, with the animal in vivo and three-dimensional in silico studies, that flow-choking followed by shock wave generation and pressure overshoot occurs in arteries with stenosis due to air embolism at a critical pressure ratio. Analytical models reveal that flow-choking occurs at relatively high and low blood viscosities in CVS at a critical blood pressure ratio (BPR), which leads to memory effect (stroke history/arterial stiffness) and asymptomatic cardiovascular diseases [Kumar et al., “Lopsided blood-thinning drug increases the risk of internal flow choking leading to shock wave generation causing asymptomatic cardiovascular disease,” Global Challenges 5, 2000076 (2021)]. We concluded that an overdose of drug for reducing the blood viscosity enhances the risk of flow choking (biofluid/boundary layer blockage persuaded flow choking) due to an enhanced boundary layer blockage (BLB) factor because of the rise in Reynolds number (Re) and turbulence. An analytical model establishes that an increase in Re due to the individual or the joint effects of fluid density, fluid viscosity, fluid velocity, and the hydraulic diameter of the vessel creates high turbulence level in CVS instigating an escalated BLB factor heading to a rapid adverse flow choking. Therefore, prescribing the exact blood-thinning course of therapy is crucial for achieving the anticipated curative value and further annulling adverse flow choking (biofluid/boundary layer blockage persuaded flow choking) in CVS. We could conclude authoritatively herein, with the animal in vivo studies, that flow choking occurs in the artery with stenosis due to air embolism at a critical BPR (i.e., SBP/DBP = 1.892 9), which is regulated by the heat capacity ratio of air. The cardiovascular risk due to boundary layer blockage persuaded flow choking could be diminished by concurrently reducing the viscosity of biofluid/blood and flow-turbulence. This comprehensive review is a pointer toward achieving relentless unchoked flow conditions (i.e., flow Mach number < 1) in the CVS for prohibiting asymptomatic cardiovascular diseases and neurological disorders associated with flow choking and shock wave generation followed by pressure overshoot causing arterial stiffness. The unchoked flow condition can be achieved in every subject (human/animal) by suitably increasing the thermal-tolerance-level in terms of BHCR and/or by reducing the BPR within the pathophysiological range of individual subjects through the new drug discovery, the new companion drug with the conventional blood thinners and/or proper health care management for increasing the healthy-life span of one and all in the universe.

1.
J. T.
Fifi
and
J.
Mocco
, “
COVID-19 related stroke in young individuals
,”
Lancet Neurol.
19
,
713
(
2020
).
2.
M. A.
Ellul
,
L.
Benjamin
,
B.
Singh
 et al, “
Neurological associations of COVID-19
,”
Lancet Neurol
19
,
767
783
(
2020
).
3.
S.
Yaghi
,
K.
Ishida
,
J.
Torres
 et al, “
SARS-CoV-2 and stroke in a New York healthcare system
,”
Stroke
51
,
2002
2011
(
2020
).
4.
A. P.
Kansagra
,
M. S.
Goyal
,
S.
Hamilton
, and
G. W.
Albers
, “
Collateral effect of COVID-19 on stroke evaluation in the United States
,”
N. Engl. J. Med.
383
,
400
401
(
2020
).
5.
J. E.
Siegler
,
M. E.
Heslin
,
L.
Thau
,
A.
Smith
, and
T. G.
Jovin
, “
Falling stroke rates during COVID-19 pandemic at a comprehensive stroke center
,”
J. Stroke Cerebrovasc. Dis.
29
, 104953
(
2020
).
6.
M.
Marshall
, “
How COVID-19 can damage the brain
,”
Nature
585
,
342
343
(
2020
).
7.
J. D.
Whitman
,
J.
Hiatt
,
C. T.
Mowery
 et al, “
Evaluation of SARS-CoV-2 serology assays reveals a range of test performance
,”
Nat. Biotechnol.
38
,
1174
1183
(
2020
).
8.
A.
Sharifi-Razavi
,
N.
Karimi
, and
N.
Rouhani
, “
COVID-19 and intracerebral haemorrhage: Causative or coincidental?
,”
New Microbes New Infect.
35
,
100669
(
2020
).
9.
M. A.
Sayed
,
W.
Eldahshan
,
M.
Abdelbary
,
B.
Pillai
,
W.
Althomali
,
M. H.
Johnson
,
A. S.
Arbab
,
A.
Ergul
, and
S. C.
Fagan
, “
Stroke promotes the development of brain atrophy and delayed cell death in hypertensive rats
,”
Sci. Rep.
10
(
1
),
20233
(
2020
).
10.
R.
Sahathevan
,
A.
Brodtmann
, and
G. A.
Donnan
, “
Dementia, stroke, and vascular risk factors—A review
,”
Int. J. Stroke
7
(
1
),
61
73
(
2012
).
11.
J. V.
Tu
, “
Reducing the global burden of stroke: INTERSTROKE
,”
Lancet
376
(
9735
),
74
75
(
2010
).
12.
C.
Qiu
,
B.
Winblad
, and
L.
Fratiglioni
, “
Te age-dependent relation of blood pressure to cognitive function and dementia
,”
Lancet Neurol.
4
(
8
),
487
499
(
2005
).
13.
W. I.
Rosenblum
, “
Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: A critical reappraisal
,”
Acta Neuropathol.
116
,
361
369
(
2008
).
14.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
V.
Saravanan
,
A.
Sukumaran
,
V.
Rajendran
 et al, “
Universal benchmark data of the three-dimensional boundary layer blockage and average friction coefficient for in silico code verification
,”
Phys. Fluids
34
(
4
),
041301
(
2022
).
15.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
S. A. R. M.
Rafc
,
A.
Sukumaran
,
P. K.
Radhakrishnan
, and
S. K.
Choudhary
, “
Discovery of nanoscale Sanal flow choking in cardiovascular system—Exact prediction of the 3D boundary-layer-blockage factor in nanotubes
,”
Sci. Rep.
11
,
15429
(
2021
).
16.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
A.
Sukumaran
,
S. A. R. M.
Rafic
 et al, “
Sanal flow choking: A paradigm shift in computational fluid dynamics code verification and diagnosing detonation and hemorrhage in real-world fluid-flow systems
,”
Global Challenges
4
,
2000012
(
2020
).
17.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
, and
S. A. R. M.
Rafc
, “
Discovery of Sanal flow choking phenomenon
,”
Patent No. IN201841049355
(4 January
2019
).
18.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R.
Sundararam Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “Internal flow choking in cardiovascular system: A radical theory in the risk assessment,” in
Cardiac Diseases
(
IntechOpen
,
2021
).
19.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R.
Sundararam Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
Lopsided blood-thinning drug increases the risk of internal flow choking leading to shock wave generation causing asymptomatic cardiovascular disease
,”
Global Challenges
5
,
2000076
(
2021
).
20.
V. R.
Sanal Kumar
,
R. S.
Bharath
,
P. K.
Radhakrishnan
,
N.
Chandrasekaran
,
S.
Kumar Choudhary
,
C.
Oommen
 et al, “
Nanoscale flow choking and spaceflight effects on cardiovascular risk of astronauts—A new perspective
,” AIAA Paper No. 2021-0357,
2021
.
21.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
S.
Menon
,
V.
Raghav
,
K. K.
Narayanan Namboodiri
,
S. E.
Sreedharan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
V.
Sankar
,
A.
Sukumaran
,
A.
Krishnan
,
A.
Pal
,
T. R.
kumar
, and
A.
Rajesh
, “
Lopsided blood-thinning drug increases the risk of internal flow choking and shock wave generation causing asymptomatic stroke
,” in International Stroke Conference, 19–20 March 2021 (
American Stroke Association
, 2021). [
Stroke
52
,
AP804
(
2021
)].
22.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
V.
Saravanan
,
V.
Natarajan
,
S.
Padmanabhan
,
A.
Sukumaran
,
S.
Mani
,
T.
Rameshkumar
,
N. D.
Hemasai
 et al, “
Boundary layer blockage, Venturi effect and cavitation causing aerodynamic choking and shock waves in human artery leading to hemorrhage and massive heart attack—A new perspective
,” AIAA Paper No. 2018-3962,
2018
.
23.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
S.
Menon
,
V.
Raghav
,
K. K.
Narayanan Namboodiri
,
S. E.
Sreedharan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
V.
Sankar
,
A.
Sukumaran
, and
A.
Krishnan
, “
Sanal flow choking leads to hemorrhagic stroke and other neurological disorders in earth and human spaceflight
,” Paper presented at the Basic Cardiovascular Sciences Conference, 23–25 August 2021 (
American Stroke Association
,
2021
). [
Circ. Res.
129
,
AP422
(2021)].
24.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R.
Sundararam Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
COVID 19 pandemic: High BPR and low BHCR are risk factors of asymptomatic cardiovascular diseases
,”
Virol. Mycol.
10
(
3
),
204
(
2021
).
25.
V. R.
Sanal Kumar
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
, and
B. N.
Raghunandan
, “
High heat capacity of blood reduces risk on myocardial infarction
,” Paper presented at World Congress On Cardiac Sciences, Bangalore, India, 2018 [
BioGenesis J. Biol. Med.
1
,
41
(
2018
)].
26.
V. R.
Sanal Kumar
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
, and
B. N.
Raghunandan
, “
In vitro prediction of the lower critical hemorrhage index
,” Paper
presented at the Asian Society for Cardiovascular and Thoracic Surgery, IACTSCON2019
,
Chennai, India
,
2019
.
27.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R.
Sundararam Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
A cogent vignette of anticoagulation for reducing the risk of Sanal flow choking during spaceflight
,” in
2022 NASA Human Research Program Investigators Workshop
,
2022
.
28.
V. R.
Sanal Kumar
 et al, “
Sanal flow choking leads to aneurysm, hemorrhagic stroke and other neurological disorders in earth and human spaceflight—New perspective
,”
J. Neurol. Disord.
9
,
452
(
2021
).
29.
A.
Jayaraman
,
R.
Deveswaran
,
S.
Bharath
,
V. R. S.
Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R. S.
Bharath
, and
C.
Oommen
, “
Animal in vivo: The proof of flow choking and bulging of the downstream region of the stenosis artery due to air embolism
,” Paper
presented at the Basic Cardiovascular Sciences Conference
, 25–28 July 2022 (
American Heart Association
,
2022
).
30.
V. R.
Sanal Kumar
,
V.
Saravanan
,
V.
Srinivasan
,
S.
Ganesh Shankar
,
S.
Mani
,
V.
Sankar
,
D.
Krishnamoorthy
 et al, “
The theoretical prediction of the boundary layer blockage and external flow choking at moving aircraft in ground effects
,”
Phys. Fluids
33
(
3
),
036108
(
2021
).
31.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
V.
Saravanan
,
V.
Natarajan
,
S.
Padmanabhan
,
A.
Sukumaran
 et al, “
A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers
,”
AIP Adv.
8
,
025315
(
2018
).
32.
M.
Whitby
and
N.
Quirke
, “
Fluid flow in carbon nanotubes and nanopipes
,”
Nat. Nanotechnol.
2
,
87
94
(
2007
).
33.
The risks of nanomaterial risk assessment,”
Nat. Nanotechnol.
15
,
163
(
2020
).
34.
Y.
Matsumoto
,
J. W.
Nichols
,
K.
Toh
,
T.
Nomoto
,
H.
Cabral
,
Y.
Miura
, and
K.
Kataoka
, “
Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery
,”
Nat. Nanotechnol.
11
(
6
),
533
538
(
2016
).
35.
S.
White
and
P.
Geubelle
, “
Get ready for repair-and-go
,”
Nat. Nanotechnol.
5
,
247
248
(
2010
).
36.
R.
Cingolani
, “
The road ahead
,”
Nat. Nanotechnol.
8
,
792
793
(
2013
).
37.
M.
Faria
,
M.
Björnmalm
,
K. J.
Thurecht
 et al, “
Minimum information reporting in bio-nano experimental literature
,”
Nat. Nanotechnol.
13
,
777
785
(
2018
).
38.
A.
Moscatelli
, “
Nanoparticles go with the flow
,”
Nat. Nanotechnol.
(published online, 2013).
39.
T.
Hayase
, “
Numerical simulation of real-world flows
,”
Fluid Dyn. Res.
47
,
051201
(
2015
).
40.
K. A. A.
Fox
,
M.
Metra
,
J.
Morais
 et al, “
The myth of ‘stable’ coronary artery disease
,”
Nat. Rev. Cardiol.
17
,
9
21
(
2020
).
41.
D.
Capodanno
,
D. L.
Bhatt
,
J. W.
Eikelboom
 et al, “
Dual-pathway inhibition for secondary and tertiary antithrombotic prevention in cardiovascular disease
,”
Nat. Rev. Cardiol.
17
,
242
257
(
2020
).
42.
D. J.
Richards
,
Y.
Li
,
C. M.
Kerr
 et al, “
Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity
,”
Nat. Biomed. Eng.
4
,
446
462
(
2020
).
43.
S.
Rashad
,
K. M.
Saqr
,
M.
Fujimura
 et al, “
The hemodynamic complexities underlying transient ischemic attacks in early-stage Moyamoya disease: An exploratory CFD study
,”
Sci. Rep.
10
,
3700
(
2020
).
44.
S. U. S.
Choi
and
J. A.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,” in
International Mechanical Engineering Congress Exhibition, San Francisco
(ASME,
1995
), Vol.
231
, pp.
99
103.
45.
A.
d'Esposito
,
P. W.
Sweeney
,
M.
Ali
 et al, “
Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours
,”
Nat. Biomed. Eng.
2
,
773
787
(
2018
).
46.
D. J.
Luna
,
N. K. R.
Pandian
,
T.
Mathur
 et al, “
Tortuosity-powered microfluidic device for assessment of thrombosis and antithrombotic therapy in whole blood
,”
Sci. Rep.
10
,
5742
(
2020
).
47.
C. C.
Mei
and
H.
Jing
, “
Effects of thin plaque on blood hammer—An asymptotic theory
,”
Eur. J. Mech. B
69
,
62
75
(
2018
).
48.
S.
Rossitti
, “
The blood-hammer effect and aneurysmal basilar artery bifurcation angles
,”
J. Neurosurg.
122
,
1512
1513
(
2015
).
49.
R.
Davarnejad
,
S.
Barati
, and
M.
Kooshki
, “
CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube
,”
SpringerPlus
2
,
192
(
2013
).
50.
A.
Kamyar
,
R.
Saidur
, and
M.
Hasanuzzaman
, “
Application of computational fluid dynamics (CFD) for nanofluids
,”
Int. J. Heat Mass Transfer
55
(
15–16
),
4104
4115
(
2012
).
51.
M. W.
Vernooij
 et al, “
Incidental findings on brain MRI in the general population
,”
N. Engl. J. Med.
357
,
1821
1828
(
2007
).
52.
R.
Tao
, “
Reducing blood viscosity and suppressing turbulence with magnetic field to prevent heart attack and stroke
,”
Proc. SPIE
10926
,
1092605
(
2019
).
53.
M. H.
Li
 et al, “
Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: A cross-sectional study
,”
Ann. Intern. Med.
159
,
514
521
(
2013
).
54.
J.
Xiang
,
V. M.
Tutino
,
K. V.
Snyder and
, and
H.
Meng
, “
CFD: Computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment
,”
Am. J. Neuroradiol.
35
(
10
),
1849
1857
(
2014
).
55.
G.
Zhou
,
Y.
Zhu
,
Y.
Yin
 et al, “
Association of wall shear stress with intracranial aneurysm rupture: Systematic review and meta-analysis
,”
Sci. Rep.
7
,
5331
(
2017
).
56.
L.
Peng
,
Y.
Qiu
,
Z.
Yang
 et al, “
Patient-specific computational hemodynamic analysis for interrupted aortic arch in an adult: Implications for aortic dissection initiation
,”
Sci. Rep.
9
,
8600
(
2019
).
57.
F. A.
Lederle
, “
Prevalence and associations of abdominal aortic aneurysm detected through screening
,”
Ann. Intern. Med.
126
(
6
),
441
(
1997
).
58.
A.
Shamloo
,
S.
Ebrahimi
,
A.
Amani
 et al, “
Targeted drug delivery of microbubble to arrest abdominal aortic aneurysm development: A simulation study towards optimized microbubble design
,”
Sci. Rep.
10
,
5393
(
2020
).
59.
T.
Wang
 et al, “
A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels
,”
Sci. Rep.
6
,
20262
(
2016
).
60.
M.
Packer
, “
Acute heart failure is an event rather than a disease
,”
JACC Heart Failure
6
(
1
),
73
75
(
2018
).
61.
A.
Mebazaa
, “
Acute heart failure deserves a log-scale boost in research support—Call for multidisciplinary and universal actions
,”
JACC Heart Failure
6
(
1
),
76
79
(
2018
).
62.
World Health Organization, see
http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/ for “
Global Health Observatory (GHO) data, Raised Blood Pressure
,”
2018
.
63.
G.
Danaei
,
Y.
Lu
,
G. M.
Singh
,
E.
Carnahan
,
G. A.
Stevens
,
M. J.
Cowan
,
F.
Farzadfar
,
J. K.
Lin
,
M. M.
Finucane
,
M.
Rao
,
Y. H.
Khang
 et al, “
The global burden of metabolic risk factors for chronic diseases collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment
,”
LANCET Diabetes Endocrinol.
2
(
8
),
634
647
(
2014
).
64.
M. R.
Shaebani
,
A.
Wysocki
,
R. G.
Winkler
 et al, “
Computational models for active matter
,”
Nat. Rev. Phys.
2
,
181
199
(
2020
).
65.
C.
Brites
,
X.
Xie
,
M.
Debasu
 et al, “
Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry
,”
Nat. Nanotechnol.
11
,
851
856
(
2016
).
66.
N. S.
Khan
,
Q.
Shah
,
A.
Bhaumik
 et al, “
Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks
,”
Sci. Rep.
10
,
4448
(
2020
).
67.
D.
Tripathi
,
S.
Bhushan
,
O. A.
Bég
 et al, “
Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering
,”
J. Hydrodyn.
30
,
1001
1011
(
2018
).
68.
Hashim
,
A.
Hafeez
,
A. S
Alshomrani
, and
M.
Khan
, “
Multiple physical aspects during the flow and heat transfer analysis of Carreau fluid with nanoparticles
,”
Sci. Rep.
8
,
17402
(
2018
).
69.
M. F.
O'Rourke
and
M. E.
Safar
, “
Relationship between aortic stifening and microvascular disease in brain and kidney: Cause and logic of therapy
,”
Hypertension
46
(
1
),
200
204
(
2005
).
70.
L. J.
Beilin
and
F. S.
Goldby
, “
High arterial pressure versus humoral factors in the pathogenesis of the vascular lesions of malignant hypertension. The case for pressure alone
,”
Clin. Sci. Mol. Med.
52
,
111
113
(
1977
).
71.
J.
Mohring
, “
High arterial pressure versus humoral factors in the pathogenesis of the vascular lesions of malignant hypertension. The case for humoral factors as well as pressure
,”
Clin. Sci. Mol. Med.
52
,
113
117
(
1977
).
72.
W.
Caleb Rutledge
,
N. U.
Ko
,
M. T.
Lawton
, and
H.
Kim
, “
Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations
,”
Transl. Stroke Res.
5
(
5
),
538
542
(
2014
).
73.
Z.
Khayyam-Nekouei
,
H.
Neshatdoost
,
A.
Yousefy
,
M.
Sadeghi
, and
G.
Manshaee
, “
Psychological factors and coronary heart disease
,”
ARYA Atheroscler.
9
(
1
),
102
111
(
2013
).
74.
H.
Yang
,
Y.
Wang
,
K.
Negishi
 et al, “
Pathophysiological effects of different risk factors for heart failure
,”
Open Heart
3
,
e000339
(
2016
).
75.
L.
Geraghty
,
G. A.
Figtree
,
A. E.
Schutte
,
S.
Patel
,
M.
Woodward
, and
C.
Arnott
, “
Cardiovascular disease in women: From pathophysiology to novel and emerging risk factors
,”
Heart, Lung Circ.
30
(
1
),
9
17
(
2021
).
76.
S.
Stewart
,
A.
Keates
,
A.
Redfern
, and
J. V. M.
John
, “
Seasonal variations in cardiovascular disease
,”
Nat. Rev. Cardiol.
14
,
654
664
(
2017
).
77.
C. D.
Fryar
,
T.-C.
Chen
, and
X.
Li
, “
Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999–2010
,”
NCHS Data Brief, No. 103
,
National Center for Health Statistics
,
2012
.
78.
O.
Hahad
 et al, “
The cardiovascular effects of noise
,”
Dtsch. Arzteblatt Int.
116
(
14
),
245
250
(
2019
).
79.
F. P.
Nzvere
 et al, “
Long-term cardiovascular diseases of heatstroke: A delayed pathophysiology outcome
,”
Cureus
12
(
8
),
e9595
(
2020
).
80.
R.
Agarwal
, “
Blood pressure components and the risk for end-stage renal disease and death in chronic kidney disease
,” Clin. J. Am. Soc. Nephrol.
4
(
4
),
830
837
(
2009
).
81.
J. D.
Anderson
, Jr.
,
Fundamentals of Aerodynamics
, 5th ed.,
McGraw-Hill Series in Aeronautical and Aerospace Engineering
(
The McGraw-Hill Companies, Inc., 2011)
, ISBN: 978-0-07-339810-5.
82.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
(
7101
),
368
373
(
2006
).
83.
S. M.
Cooper
,
B. A.
Cruden
,
M.
Meyyappan
,
R.
Raju
, and
S.
Roy
, “
Gas transport characteristics through a carbon nanotubue
,”
Nano Lett.
4
(
2
),
377
381
(
2004
).
84.
H.-C.
Diener
 et al, “
Dabigatran for prevention of stroke after embolic stroke of undetermined source
,”
N. Engl. J. Med.
380
,
1906
(
2019
).
85.
A.
Fernandes
, “
Doctor, should i keep taking an aspirin a day?
,”
N. Engl. J. Med.
380
,
1967
(
2019
).
86.
F. F.
Mussa
 et al, “
Acute aortic dissection and intramural hematoma: A systematic review
,”
JAMA
316
,
754
(
2016
).
87.
Panchal
and
S.
Menon
, “
Sanal-flow choking in rocket motors at non-reacting conditions
,”
Technical Report No. CCL-TR-2021-10
,
Computational Combustion Lab, Aerospace Engineering, Georgia Tech
,
2021
.
88.
A. N.
Nowbar
,
M.
Gitto
,
J. P.
Howard
,
D. P.
Francis
, and
R.
Al-Lamee
, “
Mortality from ischemic heart disease: Analysis of data from the world health organization and coronary artery disease risk factors from ncd risk factor collaboration
,”
Circulation
12
(
6
),
e005375
(
2019
).
89.
E.
Bartoloni
,
A.
Alunno
, and
R.
Gerli
, “
Hypertension as a cardiovascular risk factor in autoimmune rheumatic diseases
,”
Nat. Rev. Cardiol.
15
,
33
(
2018
).
90.
H.
Marti-Soler
 et al, “
Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations
,”
PLoS ONE
9
(
11
),
e113500
(
2014
).
91.
S. N.
Hayes
 et al, “
Spontaneous coronary artery dissection: Current state of the science: A scientific statement from the American Heart Association
,”
Circulation
137
,
e523
(
2018
).
92.
M. D.
Delp
, “
Apollo lunar astronauts show higher cardiovascular disease mortality: Possible deep space radiation effects on the vascular endothelium
,”
Sci. Rep.
6
,
29901
(
2016
).
93.
K.
Marshall-Goebel
 et al, “
Assessment of jugular venous blood flow stasis and thrombosis during spaceflight
,”
JAMA Network Open
2
(
11
),
e1915011
(
2019
).
94.
K.
Ganapathy
,
M.
da Rosa
, and
T.
Russomano
, “
Neurological changes in outer space
,”
Neurol. India
67
(
1
),
37
43
(
2019
).
95.
G.
Murthy
,
R. J.
Marchbanks
,
D. E.
Watenpaugh
,
J. U.
Meyer
,
N.
Eliashberg
, and
A. R.
Hargens
, “
Increased intracranial pressure in humans during simulated microgravity
,”
Physiologist
35
,
184
185
(
1992
).
96.
L. F.
Zhang
and
A. R.
Hargens
, “
Spaceflight-induced intracranial hypertension and visual impairment: Pathophysiology and countermeasures
,”
Physiol. Rev.
98
,
59
87
(
2018
).
97.
P.
Wostyn
and
P. P.
De Deyn
, “
Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts
,”
Biomarkers Med.
11
,
1003
1008
(
2017
).
98.
P.
Wostyn
and
P. P.
De Deyn
, “
Optic nerve sheath distention as a protective mechanism against the visual impairment and intracranial pressure syndrome in astronauts
,”
Invest. Ophthalmol. Visual Sci.
58
,
4601
4602
(
2017
).
99.
A. B.
Newberg
and
A.
Alavi
, “
Changes in the central nervous system during long-duration space flight: Implications for neuro-imaging
,”
Adv. Space Res.
22
,
185
196
(
1998
).
100.
A.
van Ombergen
,
A.
Demertzi
,
E.
Tomilovskaya
,
B.
Jeurissen
,
J.
Sijbers
,
I. B.
Kozlovskaya
 et al, “
The effect of spaceflight and microgravity on the human brain
,”
J. Neurol.
264
,
18
22
(
2017
).
101.
M. E.
Vazquez
, “
Neurobiological problems in long-term deep space flights
,”
Adv. Space Res.
22
,
171
183
(
1998
).
102.
A. G.
Lee
,
T. H.
Mader
,
C. R.
Gibson
, and
W.
Tarver
, “
Space flight-associated neuro-ocular syndrome
,”
JAMA Ophthalmol.
135
,
992
994
(
2017
).
103.
M.
Marshall
, “
The hidden links between mental disorders
,”
Nature
581
,
19
21
(
2020
).
104.
N. P.
Achilly
,
W.
Wang
, and
H. Y.
Zoghbi
, “
Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome
,”
Nature
592
,
596
600
(
2021
).
105.
M. D.
Reed
,
Y. S.
Yim
,
R. D.
Wimmer
 et al, “
IL-17a promotes sociability in mouse models of neurodevelopmental disorders
,”
Nature
577
,
249
253
(
2020
). 1843-6.
106.
M.
Fröhlich
,
M.
Sund
,
S.
Russ
,
A.
Hoffmeister
,
H. G.
Fischer
,
V.
Hombach
, and
W.
Koenig
, “
Seasonal variations of rheological and hemostatic parameters and acute-phase reactants in young, healthy subjects
,”
Arterioscler., Thromb., Vasc. Biol.
17
(
11
),
2692
2697
(
1997
).
107.
S.
Peng
,
Y.-L.
Xiong
,
X.-Y.
Xu
, and
P.
Yu
, “
Numerical study of unsteady viscoelastic flow past two side-by-side circular cylinders
,”
Phys. Fluids
32
,
083106
(
2020
).
108.
H.
Darvish
,
N.
Fatouraee
, and
M.
Nabaei
, “
Numerical investigation of perfusion rates in the circle of Willis in different anatomical variations and ischemic stroke
,”
Phys. Fluids
33
,
041901
(
2021
).
109.
N.
Serra
,
P. D.
Carlo
,
T.
Rea
, and
C. M.
Sergi
, “
Diffusion modeling of COVID-19 under lockdown
,”
Phys. Fluids
33
,
041903
(
2021
).
110.
A. H.
Shafaghi
,
F. R.
Talabazar
,
M.
Zuvin
,
M. T.
Gevari
,
L. G.
Villanueva
,
M.
Ghorbani
, and
A.
Koşar
, “
On cavitation inception and cavitating flow patterns in a multi-orifice microfluidic device with a functional surface
,”
Phys. Fluids
33
,
032005
(
2021
).
111.
N.
Annabi
,
M.
Baker
,
A.
Boettiger
 et al, “
Voices of biotech research
,”
Nat. Biotechnol.
39
,
281
286
(
2021
).
112.
D.
Furtado
,
M.
Björnmalm
,
S.
Ayton
,
A. I.
Bush
,
K.
Kempe
, and
F.
Caruso
, “
Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases
,”
Adv. Mater.
30
,
1801362
(
2018
).
113.
V. R.
Sanal Kumar
 et al, “
Flow choking concept in energy and combustion science research: Simulation of shock wave and detonation in PDMS based micro/milli-channel, lab-on-chip device
,”
Proposal No. VRS/IISc/ICER/Aero/13/10/2021
,
2021
,
Aerospace Engineering, Indian Institute of Science
,
Bangalore, India
.
114.
K. N.
Patel
,
J. K.
Patel
,
M. P.
Patel
,
G. C.
Rajput
, and
H. A.
Patel
, “
Introduction to hyphenated techniques and their applications in pharmacy
,”
Pharm. Methods
1
(
1
),
2
13
(
2010
).
115.
T.
Matoušek
,
Z.
Wang
,
C.
Douillet
,
S.
Musil
, and
M.
Stýblo
, “
Direct speciation analysis of arsenic in whole blood and blood plasma at low exposure levels by hydride generation-cryotrapping-inductively coupled plasma mass spectrometry
,”
Anal. Chem.
89
(
18
),
9633
9637
(
2017
).
116.
V. R.
Sanalkumar
, “
Attaining the critical systolic to diastolic blood pressure ratio as a risk factor for heart attack and hemorrhage
,” Indian
patent application No. 201741044328
(14 December
2018
).
117.
V. R.
Sanal Kumar
 et al, “
In vitro prediction of the thermal tolerance level of human being and animals
,” Indian
patent application No. 201841049592
(11 September
2020
).
118.
R.
Tao
and
K.
Huang
, “
Reducing blood viscosity with magnetic fields
,”
Phys. Rev. E
84
,
011905
(
2011
).
119.
V. R.
Sanal Kumar
 et al,
New scientific breakthroughs: inclusive studies on streamtube flow choking instigating shock wave/detonation/environmental explosions and cohort studies on biofluid/Sanal flow choking causing hemorrhagic stroke and myocardial infraction in real-world fluid-flow systems
, Report No. SPR/2022/000149, Government of India, Department of Science and Technology, Science and Engineering Research Board, 21 June
2022
.
120.
V. R.
Sanal Kumar
 et al, “
Diagnostic investigation of flow choking in PDMS based micro/milli-channel lab-on-chip device
,” Report No. CRG/2022/005241, Government of India, Department of Science and Technology, Science and Engineering Research Board, 24 May
2022
.
You do not currently have access to this content.