A liquid drop impact on to a rough solid typically produces an “impact region,” which is an area of fully wetted surface smaller than or equal to the projected area of the drop. Here, high-speed photography is used to study the size and symmetry of this impact region and microbubbles within it for water drop impacts on regular square arrays of hydrophobic micropillars. Outcomes are most strongly influenced by pillar pitch and impact Weber number (We), and there is an apparent transition from vertical to more horizontal wetting near the edge of the projected area of the falling drop. The impact region size is well described by energetic and pinning transition analyses, but profound asymmetries are observed, indicating the influence and superposition of cross-flows for gas and liquid escape. Zipping of the liquid–air interface between pillars during later stages of drop spreading is also studied. The surfaces have 20 μm wide polydimethylsiloxane pillars of circular or square cross section. Variations in array pitch (40–80 μm) and height (15–30 μm) are systematically investigated using droplets of diameter 2.51 ± 0.04 mm over the range 50< We <250. The geometric regularity of these surfaces could give rise to technological applications, but the results are also relevant to the many natural and industrial processes in which liquid drops impact upon dry surfaces with micrometer scale roughness.

1.
A. M.
Worthington
,
The Splash of a Drop and Allied Phenomena
(
Smithsonian Institution
,
Washington, DC
,
1896
).
2.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
(
1993
).
3.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
4.
E.
Collings
,
A.
Markworth
,
J.
McCoy
, and
J.
Saunders
, “
Splat-quench solidification of freely falling liquid–metal drops by impact on a planar substrate
,”
J. Mater. Sci.
25
,
3677
3682
(
1990
).
5.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
6.
M.
Pasandideh-Fard
,
R.
Bhola
,
S.
Chandra
, and
J.
Mostaghimi
, “
Deposition of tin droplets on a steel plate: Simulations and experiments
,”
Int. J. Heat Mass Transfer
41
,
2929
2945
(
1998
).
7.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
,
112
124
(
2002
).
8.
R.
Rioboo
,
C.
Tropea
, and
M.
Marengo
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
12
(
2001
).
9.
T.
Bennett
and
D.
Poulikakos
, “
Splat-quench solidification: Estimating the maximum spreading of a droplet impacting a solid surface
,”
J. Mater. Sci.
28
,
963
970
(
1993
).
10.
S.
Chandra
and
C.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London Ser. A
432
,
13
41
(
1991
).
11.
O. G.
Engel
, “
Waterdrop collisions with solid surfaces
,”
J. Res. Natl. Bur. Stand.
54
,
281
298
(
1955
).
12.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
13.
L.
Yang
,
Z.
Li
,
T.
Yang
,
Y.
Chi
, and
P.
Zhang
, “
Experimental study on droplet splash and receding breakup on a smooth surface at atmospheric pressure
,”
Langmuir
37
,
10838
10848
(
2021
).
14.
M.-J.
Wang
,
F.-H.
Lin
,
Y.-L.
Hung
, and
S.-Y.
Lin
, “
Dynamic behaviors of droplet impact and spreading: Water on five different substrates
,”
Langmuir
25
,
6772
6780
(
2009
).
15.
M.
Marengo
,
C.
Antonini
,
I. V.
Roisman
, and
C.
Tropea
, “
Drop collisions with simple and complex surfaces
,”
Curr. Opin. Colloid Interface Sci.
16
,
292
302
(
2011
).
16.
D.
Khojasteh
,
M.
Kazerooni
,
S.
Salarian
, and
R.
Kamali
, “
Droplet impact on superhydrophobic surfaces: A review of recent developments
,”
J. Ind. Eng. Chem.
42
,
1
14
(
2016
).
17.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
99
(
2008
).
18.
J.
Yong
,
F.
Chen
,
Q.
Yang
,
J.
Huo
, and
X.
Hou
, “
Superoleophobic surfaces
,”
Chem. Soc. Rev.
46
,
4168
4217
(
2017
).
19.
X.-M.
Li
,
D.
Reinhoudt
, and
M.
Crego-Calama
, “
What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces
,”
Chem. Soc. Rev.
36
,
1350
1368
(
2007
).
20.
T.
Darmanin
and
F.
Guittard
, “
Superhydrophobic and superoleophobic properties in nature
,”
Mater. Today
18
,
273
285
(
2015
).
21.
H. J.
Ensikat
,
P.
Ditsche-Kuru
,
C.
Neinhuis
, and
W.
Barthlott
, “
Superhydrophobicity in perfection: The outstanding properties of the lotus leaf
,”
Beilsteins J. Nanotechnol.
2
,
152
161
(
2011
).
22.
A.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
23.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
24.
J. C.
Bird
,
R.
Dhiman
,
H.-M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
(
2013
).
25.
Y.
Liu
,
L.
Moevius
,
X.
Xu
,
T.
Qian
,
J. M.
Yeomans
, and
Z.
Wang
, “
Pancake bouncing on superhydrophobic surfaces
,”
Nat. Phys.
10
,
515
(
2014
).
26.
Y.
Liu
,
G.
Whyman
,
E.
Bormashenko
,
C.
Hao
, and
Z.
Wang
, “
Controlling drop bouncing using surfaces with gradient features
,”
Appl. Phys. Lett.
107
,
051604
(
2015
).
27.
H.
Rashidian
,
M.
Broom
,
G. R.
Willmott
, and
M.
Sellier
, “
Effects of a microscale ridge on dynamic wetting during drop impact
,”
J. R. Soc. New Zealand
50
,
523
537
(
2020
).
28.
S.
Hu
,
Y.
Reddyhoff
,
D.
Puhan
,
S. C.
Vladescu
,
X.
Shi
,
D.
Dini
, and
Z.
Peng
, “
Droplet manipulation of hierarchical steel surfaces using femtosecond laser fabrication
,”
Appl. Surf. Sci.
521
,
146474
(
2020
).
29.
K. H. A.
Al-Ghaithi
,
O. G.
Harlen
,
N.
Kapur
, and
M. C. T.
Wilson
, “
Morphologies and dynamics of micro-droplet impact onto an idealised scratch
,”
J. Fluid Mech.
925
,
A23
(
2021
).
30.
D.
Richard
and
D.
Quéré
, “
Bouncing water drops
,”
Europhys. Lett.
50
,
769
(
2000
).
31.
M.
Reyssat
,
A.
Pépin
,
F.
Marty
,
Y.
Chen
, and
D.
Quéré
, “
Bouncing transitions on microtextured materials
,”
Europhys. Lett.
74
,
306
312
(
2006
).
32.
J.
Su
,
I.
Legchenkova
,
C.
Liu
,
C.
Lu
,
G.
Ma
,
E.
Bormashenko
, and
Y.
Liu
, “
Faceted and circular droplet spreading on hierarchical superhydrophobic surfaces
,”
Langmuir
36
,
534
539
(
2020
).
33.
P.
Tsai
,
S.
Pacheco
,
C.
Pirat
,
L.
Lefferts
, and
D.
Lohse
, “
Drop impact upon micro- and nanostructured superhydrophobic surfaces
,”
Langmuir
25
,
12293
12298
(
2009
).
34.
H.
Kim
,
C.
Lee
,
M. H.
Kim
, and
J.
Kim
, “
Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures
,”
Langmuir
28
,
11250
11257
(
2012
).
35.
D.
Sivakumar
,
K.
Katagiri
,
T.
Sato
, and
H.
Nishiyama
, “
Spreading behavior of an impacting drop on a structured rough surface
,”
Phys. Fluids
17
,
100608
(
2005
).
36.
L.
Xu
, “
Liquid drop splashing on smooth, rough, and textured surfaces
,”
Phys. Rev. E
75
,
056316
(
2007
).
37.
P.
Tsai
,
M. H. W.
Hendrix
,
R. R. M.
Dijkstra
,
L.
Shui
, and
D.
Lohse
, “
Microscopic structure influencing macroscopic splash at high weber number
,”
Soft Matter
7
,
11325
11333
(
2011
).
38.
H.
Kim
,
U.
Park
,
C.
Lee
,
H.
Kim
,
M. H.
Kim
, and
J.
Kim
, “
Drop splashing on a rough surface: How surface morphology affects splashing threshold
,”
Appl. Phys. Lett.
104
,
161608
(
2014
).
39.
Y.
Liu
,
P.
Tan
, and
L.
Xu
, “
Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
3280
3284
(
2015
).
40.
L. Z.
Wang
,
A.
Zhou
,
J. Z.
Zhou
,
L.
Chen
, and
Y. S.
Yu
, “
Droplet impact on pillar-arrayed non-wetting surfaces
,”
Soft Matter
17
,
5932
5940
(
2021
).
41.
X.
Li
,
L.
Mao
, and
X.
Ma
, “
Dynamic behavior of water droplet impact on microtextured surfaces: The effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter
,”
Langmuir
29
,
1129
1138
(
2013
).
42.
P.
García-Geijo
,
E. S.
Quintero
,
G.
Riboux
, and
J. M.
Gordillo
, “
Spreading and splashing of drops impacting rough substrates
,”
J. Fluid Mech.
917
,
A50
(
2021
).
43.
T.
de Goede
,
K.
de Bruin
,
N.
Shahidzadeh
, and
D.
Bonn
, “
Droplet splashing on rough surfaces
,”
Phys. Rev. Fluids
6
,
043604
(
2021
).
44.
D.
Bartolo
,
F.
Bouamrirene
,
E.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
,
299
305
(
2006
).
45.
D.
Quéré
and
M.
Reyssat
, “
Non-adhesive lotus and other hydrophobic materials
,”
Philos. Trans. R. Soc. A
366
,
1539
1556
(
2008
).
46.
N. J.
Shirtcliffe
,
G.
McHale
, and
M. I.
Newton
, “
The superhydrophobicity of polymer surfaces: Recent developments
,”
J. Polym. Sci., Part B: Polym. Phys.
49
,
1203
1217
(
2011
).
47.
C.
Dorrer
and
J.
Rühe
, “
Advancing and receding motion of droplets on ultrahydrophobic post surfaces
,”
Langmuir
22
,
7652
7657
(
2006
).
48.
T.
Rasilainen
,
M.
Suvanto
, and
T. A.
Pakkanen
, “
Anisotropically microstructured and micro/nanostructured polypropylene surfaces
,”
Surf. Sci.
603
,
2240
2247
(
2009
).
49.
Z.
Yoshimitsu
,
A.
Nakajima
,
T.
Watanabe
, and
K.
Hashimoto
, “
Effects of surface structure on the hydrophobicity and sliding behavior of water droplets
,”
Langmuir
18
,
5818
5822
(
2002
).
50.
A. D.
Sommers
and
A. M.
Jacobi
, “
Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface
,”
J. Micromech. Microeng.
16
,
1571
1578
(
2006
).
51.
D.
Wang
,
Y.
Liu
,
S.
Sridhar
,
Y.
Li
,
G.
McHale
,
H.
Lu
,
Z.
Yu
,
S.
Wang
, and
B. B.
Xu
, “
Biaxially morphing droplet shape by an active surface
,”
Adv. Mater. Interfaces
8
,
2001199
(
2021
).
52.
M.
Sbragaglia
,
A. M.
Peters
,
C.
Pirat
,
B. M.
Borkent
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
, “
Spontaneous breakdown of superhydrophobicity
,”
Phys. Rev. Lett.
99
,
156001
(
2007
).
53.
A. M.
Peters
,
C.
Pirat
,
M.
Sbragaglia
,
B. M.
Borkent
,
M.
Wessling
,
D.
Lohse
, and
R. G. H.
Lammertink
, “
Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity
,”
Eur. Phys. J. E
29
,
391
397
(
2009
).
54.
L.
Courbin
,
E.
Denieul
,
E.
Dressaire
,
M.
Roper
,
A.
Ajdari
, and
H. A.
Stone
, “
Imbibition by polygonal spreading on microdecorated surfaces
,”
Nat. Mater.
6
,
661
664
(
2007
).
55.
C.
Pirat
,
M.
Sbragaglia
,
A. M.
Peters
,
B. M.
Borkent
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
, “
Multiple time scale dynamics in the breakdown of superhydrophobicity
,”
Eur. Phys. Lett.
81
,
66002
(
2008
).
56.
J. T.
Pearson
,
D.
Maynes
, and
B. W.
Webb
, “
Droplet impact dynamics for two liquids impinging on isotropic superhydrophobic surfaces
,”
Exp. Fluids
53
,
603
618
(
2012
).
57.
V.
Vaikuntanathan
and
D.
Sivakumar
, “
Maximum spreading of liquid drops impacting on groove-textured surfaces: Effect of surface texture
,”
Langmuir
32
,
2399
2409
(
2016
).
58.
B. B. J.
Stapelbroek
,
H. P.
Jansen
,
E. S.
Kooij
,
J. H.
Snoeijer
, and
A.
Eddi
, “
Universal spreading of water drops on complex surfaces
,”
Soft Matter
10
,
2641
2648
(
2014
).
59.
S.
Yada
,
B.
Allais
,
W.
van der Wijngaart
,
F.
Lundell
,
G.
Amberg
, and
S.
Bagheri
, “
Droplet impact on surfaces with asymmetric microscopic features
,”
Langmuir
37
,
10849
10858
(
2021
).
60.
Y.
Ding
,
L.
Jia
,
L.
Yin
,
C.
Dang
,
X.
Liu
, and
J.
Xu
, “
Anisotropic wetting characteristics of droplet on micro-grooved surface
,”
Colloids Surf. A
633
,
127850
(
2022
).
61.
M.
Reyssat
,
F.
Pardo
, and
D.
Quéré
, “
Drops onto gradients of texture
,”
Europhs. Lett.
87
,
36003
(
2009
).
62.
M.
Reyssat
,
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Dynamical superhydrophobicity
,”
Faraday Discuss.
146
,
19
33
(
2010
).
63.
S.
Robson
and
G. R.
Willmott
, “
Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays
,”
Soft Matter
12
,
4853
4865
(
2016
).
64.
H.
Tan
, “
Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces
,”
Comput. Fluids
154
,
142
166
(
2017
).
65.
M.
Guemas
,
A. G.
Marin
, and
D.
Lohse
, “
Drop impact experiments of non-Newtonian liquids on micro-structured surfaces
,”
Soft Matter
8
,
10725
10731
(
2012
).
66.
H. B.
Parizi
,
L.
Rosenzweig
,
J.
Mostaghimi
,
S.
Chandra
,
T.
Coyle
,
H.
Salimi
,
L.
Pershin
,
A.
McDonald
, and
C.
Moreau
, “
Numerical simulation of droplet impact on patterned surfaces
,”
J. Therm. Spray Technol.
16
,
713
721
(
2007
).
67.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
68.
R. C.
van der Veen
,
M. H.
Hendrix
,
T.
Tran
,
C.
Sun
,
P. A.
Tsai
, and
D.
Lohse
, “
How microstructures affect air film dynamics prior to drop impact
,”
Soft Matter
10
,
3703
3707
(
2014
).
69.
M. M.
Driscoll
and
S. R.
Nagel
, “
Ultrafast interference imaging of air in splashing dynamics
,”
Phys. Rev. Lett.
107
,
154502
(
2011
).
70.
R. C.
van der Veen
,
T.
Tran
,
D.
Lohse
, and
C.
Sun
, “
Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry
,”
Phys. Rev. E
85
,
26315
(
2012
).
71.
K. R.
Langley
,
E. R.
Li
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
The air entrapment under a drop impacting on a nano-rough surface
,”
Soft Matter
14
,
7586
7596
(
2018
).
72.
J.
Palacios
,
J.
Hernández
,
P.
Gómez
,
C.
Zanzi
, and
J.
López
, “
On the impact of viscous drops onto dry smooth surfaces
,”
Exp. Fluids
52
,
1449
1463
(
2012
).
73.
S. T.
Thoroddsen
,
K.
Takehara
, and
T. G.
Etoh
, “
Bubble entrapment through topological change
,”
Phys. Fluids
22
,
051701
(
2010
).
74.
M. M.
Driscoll
,
C. S.
Stevens
, and
S. R.
Nagel
, “
Thin film formation during splashing of viscous liquids
,”
Phys. Rev. E
82
,
036302
(
2010
).
75.
M. A. J.
Broom
and
G. R.
Willmott
, “
High throughput analysis of liquid droplet impacts
,”
J. Vis. Exp.
157
,
e60778
(
2020
).
76.
M.
Broom
and
G. R.
Willmott
, “
Water drop impacts on regular micropillar arrays: Asymmetric spreading
,” (unpublished).
77.
D. B.
Weibel
,
W. R.
DiLuzio
, and
G. M.
Whitesides
, “
Microfabrication meets microbiology
,”
Nat. Rev. Microbiol.
5
,
209
(
2007
).
78.
S.
Zhou
,
M.
Hu
,
Q.
Guo
,
X.
Cai
,
X.
Xu
, and
J.
Yang
, “
Solvent-transfer assisted photolithography of high-density and high-aspect-ratio superhydrophobic micropillar arrays
,”
J. Micromech. Microeng.
25
,
025005
(
2015
).
79.
M.
Broom
, “
Imaging and analysis of water drop impacts on microstructure designs
,” Ph.D. thesis (
University of Auckland
,
2019
).
80.
W.
Chen
and
C.-H.
Liu
, “
An automated demolding system for pdms microstructures with high aspect ratio
,” in
2014 13th International Conference on Control Automation Robotics & Vision (ICARCV)
(
IEEE
,
2014
) pp.
1201
1206
.
81.
Bruker,
ContourGT-K 3D Optical Microscope
(
Bruker Nano Surfaces Division
,
Billerica, Massachusetts
,
2016
).
82.
K.
Smyth
,
A.
Paxon
,
H.-M.
Kwon
,
T.
Deng
, and
K. K.
Varanasi
, “
Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis
,” in
2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
IEEE
,
2010
), pp.
1
8
.
83.
J.
Jung
,
C.-J.
Kuo
,
Y.
Peles
, and
M.
Amitay
, “
The flow field around a micropillar confined in a microchannel
,”
Int. J. Heat Fluid Flow
36
,
118
132
(
2012
).
84.
T.
Tang
,
P.
Yu
,
X.
Shan
,
H.
Chen
, and
J.
Su
, “
Investigation of drag properties for flow through and around square arrays of cylinders at low Reynolds numbers
,”
Chem. Eng. Sci.
199
,
285
301
(
2019
).

Supplementary Material

You do not currently have access to this content.