The encoder–decoder LSTM (long short term memory) recurrent neural network is proposed to predict storm surge in Florida. Two types of hurricanes with six events are collected for training and testing. The previously observed meteorological data including the storm surge, the wind speed, the wind gust, the barometric pressure, and the air temperature are chosen as the inputs of model, while the future storm surge is designated as the output. The predicted results for 1, 3, 6, 9, and 12 h-lead time are obtained. Four indices are introduced to evaluate the accuracy and stability of the proposed model. Through comparing the predicted results by both models with the observed data, it is found that the encoder–decoder LSTM approach is more accurate than the convolutional neural network model for all considered cases. Furthermore, we notice that the combinations of storm surge, wind speed, wind gust, barometric pressure, and air temperature, and storm surge and wind speed give the best prediction for the first and the second types of hurricanes, respectively. Our work suggests that the encoder–decoder LSTM model has great potential in storm surge prediction. It is expected that the accuracy of this model can be further improved by introducing more observed data and considering more physical factors.

1.
R. A.
Pielke
,
J.
Gratz
,
C. W.
Landsea
,
D.
Collins
,
M. A.
Saunders
, and
R.
Musulin
, “
Normalized hurricane damage in the united states: 1900–2005
,”
Nat. Hazards Rev.
9
,
29
42
(
2008
).
2.
N.
Kohno
,
S. K.
Dube
,
M.
Entel
,
S. H. M.
Fakhruddin
,
D.
Greenslade
,
M. D.
Leroux
, and
N. B.
Thuy
, “
Recent progress in storm surge forecasting
,”
Trop. Cyclone Res. Rev.
7
,
128
139
(
2014
).
3.
K. S.
Emanuel
, “
Increasing destructiveness of tropical cyclones over the past 30 years
,”
Nature
436
,
686
688
(
2005
).
4.
S. P.
Dash
, “
How Odisha managed the Phailin disaster
,”
Econ. Politic. Wkly.
XLVIII
,
15
18
(
2013
).
5.
W. C.
Conner
,
R. H.
Kraft
, and
D. L.
Harris
, “
Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms
,”
Mon. Weather Rev.
85
,
113
116
(
1957
).
6.
P. J.
Webster
,
G. J.
Holland
,
J. A.
Curry
, and
H. R.
Chang
, “
Changes in tropical cyclone number, duration, and intensity in a warming environment
,”
Science
309
,
1844
1846
(
2005
).
7.
P.
Welander
, “
Numerical prediction of storm surges
,”
Adv. Geophys.
8
,
315
379
(
1961
).
8.
T. L.
Lee
, “
Neural network prediction of a storm surge
,”
Ocean Eng.
33
,
483
494
(
2006
).
9.
S.
Rajasekaran
,
S.
Gayathri
, and
T. L.
Lee
, “
Support vector regression methodology for storm surge predictions
,”
Ocean Eng.
35
,
1578
1587
(
2008
).
10.
R. A.
Hoover
, “
Empirical relationships of the central pressures in hurricanes to the maximum surge and storm tide
,”
Mon. Weather Rev.
85
,
167
174
(
1957
).
11.
K.
Horikawa
,
Coastal Engineering: An Introduction to Ocean Engineering
(
University of Tokyo Press
,
1978
), pp.
146
147
.
12.
C. E.
Tilburg
and
R. W.
Garvine
, “
A simple model for coastal sea level prediction
,”
Weather Forecast.
19
,
511
519
(
2004
).
13.
J. F.
Keers
, “
An empirical investigation of interaction between storm surge and astronomical tide on the east coast of Great Britain
,”
Dtsch. Hydrogr. Z.
21
,
118
125
(
1968
).
14.
C. D.
Jan
,
C. M.
Tseng
,
J. S.
Wang
, and
Y. H.
Cheng
, “
Empirical relation between the typhoon surge deviation and the corresponding typhoon characteristics: A case study in Taiwan
,”
J. Mar. Sci. Technol.
11
,
193
200
(
2006
).
15.
S.
Xu
and
W.
Huang
, “
An improved empirical equation for storm surge hydrographs in the Gulf of Mexico, U.S.A.
,”
Ocean Eng.
75
,
174
179
(
2014
).
16.
H. F.
Needham
and
B. D.
Keim
, “
An empirical analysis on the relationship between tropical cyclone size and storm surge heights along the U.S. Gulf Coast
,”
Earth Interact.
18
,
1
15
(
2014
).
17.
W. C.
Skamarock
,
J. B.
Klemp
,
J.
Dudhia
,
D. O.
Gill
,
D. M.
Barker
,
W.
Wang
, and
J. G.
Powers
,
A Description of the Advanced Research WRF Version 2
(
Mesoscale and Microscale Meteorology Division, National Center For Atmospheric Research
,
Boulder, CO
,
2005
).
18.
S. C.
Kim
,
J.
Chen
, and
W. A.
Shaffer
, “
An operational forecast model for extratropical storm surges along the U.S. East Coast
,” in
Conference on Oceanic and Atmospheric Prediction, Atlanta
(
American Meteorological Society
,
1996
), pp.
281
286
.
19.
W. B.
Chen
,
L. Y.
Lin
,
H. J.
Jiun
, and
C. H.
Chang
, “
Simulation of typhoon-induced storm tides and wind waves for the Northeastern Coast of Taiwan using a tide-surge-wave coupled model
,”
Water
9
(
7
),
549
(
2017
).
20.
C. H.
Chang
,
H. J.
Shi
,
W. B.
Chen
,
W. R.
Su
,
L. Y.
Lin
,
Y. C.
Yu
, and
J. H.
Jang
, “
Hazard assessment of typhoon-driven storm waves in the nearshore waters of Taiwan
,”
Water
10
(
7
),
926
(
2018
).
21.
S. C.
Hsiao
,
H.
Chen
,
W. B.
Chen
,
C. H.
Chang
, and
L. Y.
Lin
, “
Quantifying the contribution of nonlinear interactions to storm tide simulations during a super typhoon event
,”
Ocean Eng.
194
,
106661
(
2019
).
22.
W. B.
Chen
,
H.
Chen
,
S. C.
Hsiao
,
C. H.
Chang
, and
L. Y.
Lin
, “
Wind forcing effect on hindcasting of typhoon-driven extreme waves
,”
Ocean Eng.
188
,
106260
(
2019
).
23.
C. P.
Jelesnianski
, “
Numerical computations of storm surges with bottom stress
,”
Mon. Weather Rev.
94
,
379
394
(
1966
).
24.
C. P.
Jelesnianski
,
SLOSH: Sea, Lake, and Overland Surges From Hurricanes
(
US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service
,
1992
), Vol.
48
.
25.
N. R.
Booij
,
R. C.
Ris
, and
L. H.
Holthuijsen
, “
A third-generation wave model for coastal regions: 1. Model description and validation
,”
J. Geophys. Res.: Oceans
104
,
7649
7666
, (
1999
).
26.
R. C.
Ris
,
L. H.
Holthuijsen
, and
N.
Booij
, “
A third generation wave model for coastal regions: 2. Verification
,”
J. Geophys. Res.: Oceans
104
,
7667
7681
, (
1999
).
27.
P. K.
Bhaskaran
,
S.
Nayak
, and
S. R.
Bonthu
, “
Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal
,”
Environ. Fluid Mech.
13
,
601
(
2013
).
28.
R.
Gayathri
,
P. K.
Bhaskaran
, and
D.
Sen
, “
A numerical study of hypothetical storm surge and coastal inundation for AILA cyclone in the Bay of Bengal
,”
Environ. Fluid Mech.
4
,
404
411
(
2015
).
29.
J.
Poulose
,
A. D.
Rao
, and
P. K.
Bhaskaran
,
Role of Continental Shelf on Non-Linear Interaction of Storm Surges, Tides and Wind Waves: An Idealized Study Representing the West Coast of India
(
Estuarine Coastal and Shelf Science
,
2018
).
30.
J. C.
Dietrich
,
M.
Zijlema
,
J. J.
Westerink
,
L. H.
Holthuijsen
,
C.
Dawson
,
R. A.
Luettich
, and
G. W.
Stone
, “
Modeling hurricane waves and storm surge using integrally-coupled, scalable computations
,”
Coastal Eng.
58
,
45
65
(
2011
).
31.
D. M.
Xie
,
Q. P.
Zou
, and
J. W.
Cannon
, “
Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot's Day storm
,”
Water Sci. Eng.
9
,
33
41
(
2016
).
32.
W. C.
Liu
and
W. C.
Huang
, “
Investigating typhoon-induced storm surge and waves in the Coast of Taiwan using an integrally-coupled tide-surge-wave model
,”
Ocean Eng.
212
,
107571
(
2020
).
33.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
34.
M. C.
Deo
and
C. S.
Naidu
, “
Real time wave forecasting using neural networks
,”
Ocean Eng.
26
,
191
203
(
1998
).
35.
B. P.
Dubey
,
D. S.
Pilkhwal
, and
P. K.
Vijayan
, “
Reliable prediction of complex thermal hydraulic parameters by ANN
,”
Ann. Nucl. Energy
25
,
1069
1078
(
1998
).
36.
M.
Campolo
,
P.
Andreussi
, and
A.
Soldati
, “
River flood forecasting with a neural network model
,”
Water Resour. Res.
35
,
1191
1197
, (
1999
).
37.
A.
Erdil
and
E.
Arcaklioglu
, “
The prediction of meteorological variables using artificial neural network
,”
Neural Comput. Appl.
22
,
1677
1683
(
2013
).
38.
C. P.
Tsai
and
C. Y.
You
, “
Development of models for maximum and time variation of storm surges at the Tanshui estuary
,”
Nat. Hazards Earth Syst. Sci.
14
,
2313
2320
(
2014
).
39.
C. C.
Young
,
W. C.
Liu
, and
C. E.
Chung
, “
Genetic algorithm and fuzzy neural networks combined with the hydrological modeling system for forecasting watershed runoff discharge
,”
Neural Comput. Appl.
26
,
1631
1643
(
2015
).
40.
T. L.
Lee
, “
Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan
,”
Eng. Appl. Artif. Intell.
21
,
63
72
(
2008
).
41.
T. L.
Lee
, “
Predictions of typhoon storm surge in Taiwan using artificial neural networks
,”
Adv. Eng. Software
40
,
1200
1206
(
2009
).
42.
M. M.
De Oliveira
,
N. F.
Ebecken
, and
S. I.
De Oliveira
, “
Neural network model to predict a storm surge
,”
J. Appl. Meteorol. Climatol.
48
,
143
155
(
2009
).
43.
M. R.
Hashemi
,
M. L.
Spaulding
,
A.
Shaw
,
H.
Farhadi
, and
M.
Lewis
, “
An efficient artificial intelligence model for prediction of tropical storm surge
,”
Nat. Hazards
82
,
471
491
(
2016
).
44.
M.
Sztobryn
, “
Forecast of storm surge by means of artificial neural network
,”
J. Sea Res.
49
,
317
322
(
2003
).
45.
A.
Kashefi
,
R.
Davis
, and
J.
Leonidas
, “
A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries
,”
Phys. Fluids
33
,
027104
(
2021
).
46.
M.
Romit
,
L.
Bethany
, and
B.
Prasanna
, “
Non-autoregressive time-series methods for stable parametric reduced-order models
,”
Phys. Fluids
32
,
087115
(
2020
).
47.
D.
Sun
,
Z. R.
Wang
,
F.
Q
, and
J. Q.
Bai
, “
A deep learning based prediction approach for the supercritical airfoil at transonic speeds
,”
Phys. Fluids
33
,
086109
(
2021
).
48.
Z. W.
Deng
,
C. X.
He
, and
Y. Z.
Liu
, “
Deep neural network-based strategy for optimal sensor placement in data assimilation of turbulent flow
,”
Phys. Fluids
33
,
025119
(
2021
).
49.
Z. W.
Deng
,
Y. J.
Chen
, and
Y. Z.
Liu
, “
Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework
,”
Phys. Fluids
31
,
075108
(
2019
).
50.
Y. H.
Yin
,
P.
Yang
,
Y. F.
Zhang
,
H. X.
Chen
, and
S.
Fu
, “
Feature selection and processing of turbulence modeling based on an artificial neural network
,”
Phys. Fluids
32
,
105117
(
2020
).
51.
S.
Kim
,
Y.
Matsumi
,
S.
Pan
, and
H.
Mase
, “
A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan
,”
Ocean Eng.
122
,
44
53
(
2016
).
52.
S. W.
Kim
,
A.
Lee
, and
J.
Mun
, “
A surrogate modeling for storm surge prediction using an artificial neural network
,”
J. Coastal Res.
85
,
866
870
(
2018
).
53.
S. W.
Kim
,
S.
Pan
, and
H.
Mase
, “
Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan
,”
Appl. Ocean Res.
91
,
101871
(
2019
).
54.
N. T.
Hien
,
C. T.
Tran
,
X. H.
Nguyen
,
S.
Kim
,
V. D.
Phai
,
N. B.
Thuy
, and
N.
Van Manh
, “
Genetic programming for storm surge forecasting
,”
Ocean Eng.
215
,
107812
(
2020
).
55.
M.
Bajo
and
G.
Umgiesser
, “
Storm surge forecast through a combination of dynamic and neural network models
,”
Ocean Modell.
33
,
1
9
(
2010
).
56.
W. B.
Chen
,
W. C.
Liu
, and
M. H.
Hsu
, “
Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model
,”
Nat. Hazards Earth Syst. Sci.
12
,
3799
3809
(
2012
).
57.
A.
Al Kajbaf
and
M.
Bensi
, “
Application of surrogate models in estimation of storm surge: A comparative assessment
,”
Appl. Soft Comput.
91
,
106184
(
2020
).
58.
M. J.
Torres
,
H. M.
Reza
,
S.
Hayward
,
M.
Spaulding
,
I.
Ginis
, and
S. T.
Grilli
, “
Role of hurricane wind models in accurate simulation of storm surge and waves
,”
J. Waterw., Port Coastal Ocean Eng.
145
,
04018039
(
2019
).
59.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
60.
Q.
Sun
,
M. V.
Jankovic
,
L.
Bally
, and
S. G.
Mougiakakou
, “
Predicting blood glucose with an LSTM and bi-LSTM based deep neural network
,” in
2018 14th Symposium on Neural Networks and Applications (NEUREL)
(
IEEE
,
2018
), pp.
1
5
.
61.
S.
Fan
,
N.
Xiao
, and
S.
Dong
, “
A novel model to predict significant wave height based on long short-term memory network
,”
Ocean Eng.
205
,
107298
(
2020
).
62.
R. K.
Han
,
Y. X.
Wang
,
Y.
Zhang
, and
G.
Chen
, “
A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network
,”
Phys. Fluids
31
,
127101
(
2019
).
63.
Y.
Chen
,
D.
Wu
,
L.
Duan
, and
Q.
Kang
, “
Machine learning method for the supplement, correction, and prediction of the nonlinear dynamics in pattern formation
,”
Phys. Fluids
33
,
024110
(
2021
).
64.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
, and
P.
Haffner
, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
(
11
),
2278
2324
(
1998
).
65.
S.
Ren
,
K.
He
,
R.
Girshick
, and
J.
Sun
, “
Faster R-CNN: Towards real-time object detection with region proposal networks
,” in
Proceedings of Advances in Neural Information Processing System
(
MIT Press
,
2015
), pp.
91
99
.
66.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Spatial pyramid pooling in deep convolutional networks for visual recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
37
(
9
),
1904
1906
(
2015
).
67.
S. R.
Selvin
,
E. A.
Vinayakumar
,
V. K.
Gopalakrishnan
, and
K. P.
Soman
, “
Stock price prediction using LSTM, RNN and CNN-sliding window model
,” in
2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
(
IEEE
,
2017
), pp.
1643
1647
.
68.
D.
Qin
,
J.
Yu
,
G.
Zou
,
R.
Yong
,
Q.
Zhao
, and
B.
Zhang
, “
A novel combined prediction scheme based on CNN and LSTM for urban PM2.5 concentration
,”
IEEE Access
7
,
20050
20059
(
2019
).
69.
C. L.
Liu
,
W. H.
Hsaio
, and
Y. C.
Tu
, “
Time series classification with multivariate convolutional neural network
,”
IEEE Trans. Ind. Electron.
66
(
6
),
4788
4797
(
2019
).
70.
B. Z.
Han
and
W. X.
Huang
, “
Active control for drag reduction of turbulent channel flow based on convolutional neural networks
,”
Phys. Fluids.
32
,
095108
(
2020
).
71.
M. L.
Cheng
,
F. X.
Fang
,
I. M.
Navon
, and
C. C.
Pain
, “
A real-time flow forecasting with deep convolutional generative adversarial network: Application to flooding event in Denmark
,”
Phys. Fluids
33
,
056602
(
2021
).
72.
K.
Cho
,
M. B.
Van
,
C.
Gulcehre
,
D.
Bahdanau
,
F.
Bougares
,
H.
Schwenk
, and
Y.
Bengio
, “
Learning phrase representations using RNN encoder-decoder for statistical machine translation
,” arXiv preprint arXiv:1406.1078 (
2014
).
73.
K.
Lu
,
W. X.
Sun
,
X.
Wang
,
X. R.
Meng
,
Y.
Zhai
,
H. H.
Li
, and
R. G.
Zhang
, “
Short-term wind power prediction model based on encoder-decoder LSTM
,” in
IOP Conference Series: Earth and Environmental Science
(
IOP
,
2018
), Vol.
186
, p.
012020
.
74.
S.
Du
,
T.
Li
,
Y.
Yang
,
X.
Gong
, and
S. J.
Horng
, “
An LSTM based encoder-decoder model for multistep traffic flow prediction
,” in
2019 International Joint Conference on Neural Networks (IJCNN)
(
IEEE
,
2019
), pp.
14
19
.
75.
S. J.
Carlton
and
S. K.
Jacobson
, “
Climate change and coastal environmental risk perceptions in Florida
,”
J. Environ. Manage.
130
,
32
39
(
2013
).
76.
R. J.
Black
,
Florida Climate Data
(
University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS
,
1993
), pp.
1
4
.
77.
E. S.
Blake
,
E. N.
Rappaport
, and
C. W.
Landsea
,
The Deadliest, Costliest, and Most Intense United States Tropical Cyclones From 1851 to 2006 (and Other Frequently Requested Hurricane Facts)
(
NOAA/National Weather Service, National Centers for Environmental Prediction, National Hurricane Center
,
2007
), p.
43
.
78.
S. K.
Smith
and
C.
McCarty
, “
Fleeing the storm(s): An examination of evacuation behavior during Florida's 2004 hurricane season
,”
Demography
46
,
127
145
(
2009
).
79.
A. T.
Doodson
, “
The analysis and prediction of tides in shallow water
,”
Int. Hydrogr. Rev.
33
,
85
126
(
1957
).
80.
D. L.
Harris
,
N. A.
Pore
, and
R. A.
Cummings
, “
Tide and tidal current prediction by high speed digital computer
,”
Int. Hydrogr. Rev.
42
,
95
103
(
1965
).
81.
J.
Gehring
,
M.
Auli
,
D.
Grangier
, and
Y. N.
Dauphin
, “
A convolutional encoder model for neural machine translation
,” arXiv preprint arXiv:1611.02344 (
2016
).
82.
M. J.
Ellis
and
V.
Chinde
, “
An encoder-decoder LSTM-based EMPC framework applied to a building HVAC system
,”
Chem. Eng. Res. Des.
160
,
508
520
(
2020
).
83.
I. F.
Kao
,
Y.
Zhou
,
L. C.
Chang
, and
F. J.
Chang
, “
Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting
,”
J. Hydrol.
583
,
124631
(
2020
).
84.
P.
Lyu
,
N.
Chen
,
S.
Mao
, and
M.
Li
, “
LSTM based encoder-decoder for short-term predictions of gas concentration using multi-sensor fusion
,”
Process Saf. Environ. Prot.
137
,
93
105
(
2020
).
85.
P.
Lara-Benítez
,
M.
Carranza-García
, and
J. C.
Riquelme
, “
An experimental review on deep learning architectures for time series forecasting
,”
Int. J. Neural Syst.
31
,
2130001
(
2021
).
86.
R. J.
Williams
and
D.
Zipser
, “
A learning algorithm for continually running fully recurrent neural networks
,”
Neural Comput.
1
,
270
280
(
1989
).
87.
A.
Graves
and
J.
Schmidhuber
, “
Framewise phoneme classification with bidirectional LSTM and other neural network architectures
,”
Neural Networks
18
(
5–6
),
602
610
(
2005
).
88.
K.
Greff
,
R. K.
Srivastava
,
J.
Koutník
,
B. R.
Steunebrink
, and
J.
Schmidhuber
, “
LSTM: A search space odyssey
,”
IEEE Trans. Neural Networks Learn. Syst.
28
(
10
),
2222
2232
(
2017
).
89.
N.
Kalchbrenner
and
P.
Blunsom
, “
Recurrent continuous translation models
,” in
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
(
Association for Computational Linguistics
,
2013
), pp.
1700
1709
.
90.
I.
Sutskever
,
O.
Vinyals
, and
Q. V.
Le
, “
Sequence to sequence learning with neural networks
,” arXiv preprint arXiv:1409.3215 (
2014
).
91.
M.
Binkowski
,
G.
Marti
, and
P.
Donnat
, “
Autoregressive convolutional neural networks for asynchronous time series
,” in
International Conference on Machine Learning
(
PMLR
,
2017
), pp.
580
589
.
92.
A.
Borovykh
,
S.
Bohte
, and
C. W.
Oosterlee
, “
Conditional time series forecasting with convolutional neural networks
,”
Proc. Int. Conf. Artif. Neural Networks
1703
,
04691
(
2017
).
93.
I.
Koprinska
,
D.
Wu
, and
Z.
Wang
, “
Convolutional neural networks for energy time series forecasting
,” in
2018 International Joint Conference Neural Networks
(
IEEE
,
2018
), pp.
1
8
.
94.
C. M.
Tseng
,
C. D.
Jan
,
J. S.
Wang
, and
C. M.
Wang
, “
Application of artificial neural networks in typhoon surge forecasting
,”
Ocean Eng.
34
,
1757
1768
(
2007
).
95.
J.
Snoek
,
H.
Larochelle
, and
R. P.
Adams
, “
Practical Bayesian optimization of machine learning algorithms
,” arXiv preprint arXiv:1206.2944 (
2012
).
96.
F.
Hutter
,
H.
Hoos
, and
B. K.
Leyton-Brown
, “
An efficient approach for assessing hyperparameter importance
,” in
Proceedings of the 31st International Conference on Machine Learning
(
PMLR
,
2014
), pp.
754
762
.
97.
Y. R.
Li
,
Z. F.
Zhu
,
D. Q.
Kong
,
H.
Han
, and
Y.
Zhang
, “
EA-LSTM: Evolutionary attention-based LSTM for time series prediction
,”
Knowl.-Based Syst.
181
,
104785
(
2019
).
You do not currently have access to this content.