An experimental study was performed to investigate the characteristics of a self-sustained oscillating jet emitted from a double feedback channel fluidic oscillator under high pressure inlet conditions. The working fluid was N2 gas from a portable liquid nitrogen tank. The pressure, temperature, and flow rate were measured, and z-type schlieren visualization was performed to study the high-frequency oscillating jet at nozzle pressure ratios (NPRs) of 4–16. A proper orthogonal decomposition (POD) technique was performed on schlieren images, and a Fast Fourier transform was performed on time coefficients of POD modes to calculate the frequency of oscillations. The results show that for the examined NPRs, the frequency of the oscillating jet is independent of the pressure and flow rate, which contrasts with previous studies. However, the flow behavior varies when changing the NPR. The frequency did not increase with increasing supply pressure. In order to find the main reason for the fixed frequency, a second-order mass spring system was assumed. An equation is also proposed for obtaining the resonance frequency of the double feedback fluidic oscillator.

1.
X.
Meng
,
C.
Xu
, and
H.
Yu
, “
Feedback fluidic flowmeters with curved attachment walls
,”
Flow Meas. Instrum.
30
,
154
159
(
2013
).
2.
D.
Guyot
,
C. O.
Paschereit
, and
S.
Raghu
, “
Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation
,”
Int. J. Flow Control
1
,
155
165
(
2009
).
3.
D. J.
Kim
,
S.
Jeong
,
T.
Park
, and
D.
Kim
, “
Impinging sweeping jet and convective heat transfer on curved surfaces
,”
Int. J. Heat Fluid Flow
79
,
108458
(
2019
).
4.
S.
Mohammadshahi
,
H.
Samsam-Khayani
,
T.
Cai
, and
K. C.
Kim
, “
Experimental and numerical study on flow characteristics and heat transfer of an oscillating jet in a channel
,”
Int. J. Heat Fluid Flow
86
,
108701
(
2020
).
5.
H.
Samsam-Khayani
,
S.
Mohammadshahi
, and
K. C.
Kim
, “
Experimental study on physical behavior of fluidic oscillator in a confined cavity with sudden expansion
,”
Appl. Sci.
10
,
8668
(
2020
).
6.
M. N.
Tomac
, “
Novel impinging jets-based non-periodic sweeping jets
,”
J. Visualization
23
,
369
372
(
2020
).
7.
M. N.
Tomac
, “
Novel jet impingement atomization by synchronizing the sweeping motion of the fluidic oscillators
,”
J. Visualization
23
,
373
375
(
2020
).
8.
Z.
Broučková
and
Z.
Trávníček
, “
Intermittent round jet controlled by lateral pulse-modulated synthetic jets
,”
J. Visualization
22
,
459
476
(
2019
)..
9.
X.
Wen
,
Z.
Li
,
W.
Zhou
, and
Y.
Liu
, “
Interaction of dual sweeping impinging jets at different Reynolds numbers
,”
Phys. Fluids
30
,
105105
(
2018
).
10.
X.
Wen
,
Z.
Li
,
L.
Zhou
,
C.
Yu
,
Z.
Muhammad
,
Y.
Liu
,
S.
Wang
, and
Y.
Liu
, “
Flow dynamics of a fluidic oscillator with internal geometry variations
,”
Phys. Fluids
32
,
075111
(
2020
).
11.
S.
Mohammadshahi
,
H.
Samsam-Khayani
,
T.
Cai
,
M.
Nili-Ahmadabadi
, and
K. C.
Kim
, “
Experimental study on flow characteristics and heat transfer of an oscillating jet in a cross flow
,”
Int. J. Heat Mass Transfer
173
,
121208
(
2021
).
12.
S.
Mohammadshahi
,
H.
Samsam-Khayani
,
Z.
Deng
, and
K. C.
Kim
, “
Experimental investigation of flow dynamics of oscillating jet emitted in confined and non-confined backward-facing step geometries
,”
Eur. J. Mech.-B
88
,
89
102
(
2021
).
13.
S.
Mohammadshahi
,
H.
Samsam-khayani
,
O.
Nematollahi
, and
K. C.
Kim
, “
Flow characteristics of a wall-attaching oscillating jet over single-wall and double-wall geometries
,”
Exp. Therm. Fluid Sci.
112
,
110009
(
2020
).
14.
X.
Wen
,
K.
Zhou
,
P.
Liu
,
H.
Zhu
,
Q.
Wang
, and
Y.
Liu
, “
Schlieren visualization of coflow fluidic thrust vectoring using sweeping jets
,”
AIAA J.
60
,
1
10
(
2021
).
15.
S. A.
Gokoglu
,
M. A.
Kuczmarski
,
D. E.
Culley
, and
S.
Raghu
, “
Numerical studies of an array of fluidic diverter actuators for flow control
,” in
41st AIAA Fluid Dynamics Conference and Exhibit
(
2011
).
16.
G. S.
Jones
,
W. E.
Milholen
,
J. S.
Fell
,
S. R.
Webb
, and
C. M.
Cagle
, “
Using computational fluid dynamics and experiments to design sweeping jets for high Reynolds number cruise configurations
,” in
8th AIAA Flow Control Conference
(
2016
).
17.
F.
von Gosen
,
F.
Ostermann
,
R.
Woszidlo
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Experimental investigation of compressibility effects in a fluidic oscillator
,” in
53rd AIAA Aerospace Sciences Meeting
(
2015
).
18.
M. G.
Berry
,
A. S.
Magstadt
, and
M. N.
Glauser
, “
Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets
,”
Phys. Fluids
29
,
020706
(
2017
).
19.
L.
Liu
,
X.
Li
,
N.
Liu
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
The feedback loops of discrete tones in under-expanded impinging jets
,”
Phys. Fluids
33
,
106112
(
2021
).
20.
J. L.
Lumley
,
Stochastic Tools in Turbulence
(
Dover
,
Mineola, NY
,
1980
), Vol.
10
.
21.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. II. Symmetries and transformations
,”
Q. Appl. Math.
45
,
573
582
(
1987
).
22.
S.
Park
,
A.
Wachsman
,
A. M.
Annaswamy
,
A. F.
Ghoniem
,
B.
Pang
, and
K. H.
Yu
, “
Experimental study of POD-based control for combustion instability using a linear photodiode array
,”
AIAA Paper No. 2004-639
,
2004
.
23.
D.
Hirsch
and
M.
Gharib
, “
Schlieren visualization and analysis of sweeping jet actuator dynamics
,”
AIAA J.
56
,
2947
2960
(
2018
).
24.
D. J.
Portillo
,
E. N.
Hoffman
,
M.
Garcia
,
E.
LaLonde
,
E.
Hernandez
,
C. S.
Combs
, and
L.
Hood
, “
Modal analysis of a sweeping jet emitted by a fluidic oscillator
,” in
AIAA Aviation Forum
(
2021
).
25.
Z.
Li
,
J.
Liu
,
W.
Zhou
,
Y.
Liu
, and
X.
Wen
, “
Experimental investigation of flow dynamics of sweeping jets impinging upon confined concave surfaces
,”
Int. J. Heat Mass Transfer
142
,
118457
(
2019
).
26.
F.
Ostermann
,
R.
Woszidlo
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Properties of a sweeping jet emitted from a fluidic oscillator
,”
J. Fluid Mech.
857
,
216
238
(
2018
).
27.
M.
Koklu
and
L. P.
Melton
, “
Sweeping jet actuator in a quiescent environment
,” in
43rd Fluid Dynamics Conference
,
2013
.
28.
F.
von Gosen
,
F.
Ostermann
,
R.
Woszidlo
,
C.
Nayeri
, and
C. O.
Paschereit
, “
Experimental investigation of compressibility effects in a fluidic oscillator
,” in
53rd AIAA Aerospace Sciences Meeting
(
2015
).
29.
W.
Liu
,
Y.
Kang
,
M.
Zhang
,
X.
Wang
, and
D.
Li
, “
Self-sustained oscillation and cavitation characteristics of a jet in a Helmholtz resonator
,”
Int. J. Heat Fluid Flow
68
,
158
172
(
2017
).
You do not currently have access to this content.