The Noble–Abel (NA) equation of state (EOS) is widely used in the interior ballistics of guns as well as rocket propulsion computations. Its simplicity and accuracy are key points for intensive computations with hyperbolic two-phase flow models considered in interior ballistics codes. An alternative formulation is examined in the present contribution through a first-order virial (VO1) equation of state. Appropriate methods for the determination of related parameters, such as specific gas constant, co-volume, and condensed material energy, for both formulations (NA and VO1) are presented. For this, a combination of closed bomb vessel experiments and thermochemical code computations is needed. An extended VO1 EOS with temperature-dependent specific heat is examined. Then, its extension to multiple reactive materials is addressed. Examples are examined for each formulation (NA and VO1) and comparisons are done with the Becker–Kistiakowsky–Wilson (BKW) EOS as reference. Several conclusions have emerged. First, a consideration of the specific heat temperature dependance in computations of the interior ballistics of guns appeared insignificant. Second, VO1 appeared to be more accurate than NA, particularly when gas density is beyond the range used for EOS parameter determination. Last, regarding mixtures of condensed reactive materials, producing burnt gas mixtures, NA again appeared to be less accurate than VO1. However, its formulation is explicit, while VO1 requires numerical solving of a non-linear equation, with consequences on computational cost.

1.
Bac
,
J. P.
, “
Bagheera: A ballistic thermodynamic code
,” in
3rd International Gun Propellant Symposium
(
Picatinny Arsenal/Dover
,
NJ
,
1984
).
2.
Baer
,
M. R.
, and
Nunziato
,
J. W.
, “
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
(
6
),
861
889
(
1986
).
3.
Becker
,
R.
, “
Eine Zustandsgleichung für Stickstoff bei großen Dichten
,”
Z. Phys.
4
(
3
),
393
409
(
1921
).
4.
Callen
,
H. B.
, and
Kestin
,
J.
,
An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics
(
Wiley
,
New York
,
1960
).
5.
Chase
,
M. W.
, Jr.
, “
NIST-JANAF thermochemical tables
,”
J. Phys. Chem. Ref. Data, Monogr.
9
,
175
(
1998
).
6.
Chiapolino
,
A.
,
Boivin
,
P.
, and
Saurel
,
R.
, “
A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows
,”
Comput. Fluids
150
,
31
45
(
2017
).
7.
Cochran
,
G.
, and
Chan
,
J.
, “
Shock initiation and detonation models in one and two dimensions
,” Report No. U
CID-18024
(
Lawrence National Laboratory
,
1979
).
8.
Conroy
,
P. J.
,
Wildman
,
R. A.
,
Robinette
,
E. J.
,
Schmidt
,
J. R.
, and
Gaynor
,
A. T.
, “
Propellant grain for optimizing the interior ballistic performance of a weapon
,”
U.S. patent 10,906,848
(
2021
).
9.
Daniel
,
M.
,
Hart
,
A.
, and
Provatas
,
A.
, “
Transformative energetics: A pathway to next generation munitions
,” in
Energetic Systems and Effects Branch, Australian Explosive Ordnance Safety Symposium (PARARI 2017)
(
2017
).
10.
Farrar
,
C. I.
, and
Leeming
,
D. W.
,
Military Ballistics: A Basic Manual, Battlefield Weapons Systems and Technology
(
Royal Military College of Science
,
Shrivenham
,
UK
,
1983
), Vol.
10
.
11.
Fried
,
L.
, and
Souers
,
P.
, “
CHEETAH: A next generation thermochemical code
,”
Report No. UCRL-ID-117240
(
Lawrence Livermore National Laboratory
,
CA
,
1994
).
12.
Godunov
,
S. K.
,
Zabrodin
,
A. V.
,
Ivanov
,
M. I.
,
Kraiko
,
A. N.
, and
Prokopov
,
G. P.
, “
Numerical solution of multidimensional problems of gas dynamics
,”
Moscow Izd. Nauka
1
,
400
(
1976
); available at https://ui.adsabs.harvard.edu/abs/1976MoIzN....U....G.
13.
Heuzé
,
O.
, “
Equation of state of detonation products: Influence in the repulsive intermolecular potential
,”
Phys. Rev. A
34
(
1
),
428
433
(
1986
).
14.
Hobbs
,
M. L.
, and
Baer
,
M. R.
, “
Calibrating the BKW-EOS with a large product species data base and measured CJ properties
,” in
Tenth Symposium (International) on Detonation
, Boston, MA (
1993
).
15.
Kistiakowsky
,
G. B.
, and
Wilson
,
E. B.
, Jr.
, “
The prediction of detonation velocities of solid explosives
,”
Report No. OSRD-114
(
Office of Scientific Research and Development
,
1941
).
16.
Lallemand
,
M. H.
, and
Saurel
,
R.
, “
Pressure relaxation procedures for multiphase compressible flows
,”
NRIA Report No. 4038
(
INRIA
,
2000
).
17.
Lallemand
,
M. H.
,
Chinnayya
,
A.
, and
Le Metayer
,
O.
, “
Pressure relaxation procedures for multiphase compressible flows
,”
Int. J. Numer. Methods Fluids
49
(
1
),
1
56
(
2005
).
18.
Le Métayer
,
O.
, and
Saurel
,
R.
, “
The Noble-Abel stiffened-gas equation of state
,”
Phys. Fluids
28
(
4
),
046102
(
2016
).
19.
Le Métayer
,
O.
,
Massoni
,
J.
, and
Saurel
,
R.
, “
Élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques
,”
Int. J. Thermal Sci.
43
(
3
),
265
276
(
2004
).
20.
Menikoff
,
R.
, and
Plohr
,
B. J.
, “
The Riemann problem for fluid flow of real materials
,”
Rev. Mod. Phys.
61
(
1
),
75
(
1989
).
21.
Onnes
,
H. K.
, “
Expression of the equation of state of gases and liquids by means of series
,”
Proc. K. Ned. Akad. Wet., Ser. B
4
,
125
147
(
1902
); available at https://dwc.knaw.nl/DL/publications/PU00014258.pdf.
22.
Radulescu
,
M. I.
, “
Compressible flow in a Noble–Abel stiffened gas fluid
,”
Phys. Fluids
32
(
5
),
056101
(
2020
).
23.
Saurel
,
R.
, and
Abgrall
,
R.
, “
A multiphase Godunov method for compressible multifluid and multiphase flows
,”
J. Comput. Phys.
150
(
2
),
425
467
(
1999
).
24.
Saurel
,
R.
,
Chinnayya
,
A.
, and
Carmouze
,
Q.
, “
Modelling compressible dense and dilute two-phase flows
,”
Phys. Fluids
29
(
6
),
063301
(
2017
).
25.
Suceska
,
M.
,
Chan
,
H. Y.
, and
How-Ghee
,
A.
, “
Can the accuracy of BKW EOS be improved?
,” in
15th International Detonation Symposium Proceedings
, San Francisco, CA (
2014
).
26.
Taileb
,
S.
,
Melguizo-Gavilanes
,
J.
, and
Chinnayya
,
A.
, “
The influence of the equation of state on the cellular structure of gaseous detonations
,”
Phys. Fluids
33
(
3
),
036105
(
2021
).
27.
van Driel
,
C.
,
Straathof
,
M.
, and
van Lingen
,
J.
, “
Developments in additive manufacturing of energetic materials at TNO
,” in
30th International Symposium on Ballistics
, Long Beach CA, September 15 (
2017
).
28.
Volk
,
F.
, and
Bathelt
,
H.
, “
User's manual for the ICT-thermodynamic code/Vol. 1
,”
ICT-Report No. 14/88
(
Pfinztal
,
Germany
,
1988
).
29.
Wang
,
S. Y.
,
Butler
,
P. B.
, and
Krier
,
H.
, “
Non-ideal equations of state for combusting and detonating explosives
,”
Prog. Energy Combust. Sci.
11
(
4
),
311
331
(
1985
).
30.
Yang
,
W.
,
Hu
,
R.
,
Zheng
,
L.
,
Yan
,
G.
, and
Yan
,
W.
, “
Fabrication and investigation of 3D-printed gun propellants
,”
Mater. Des.
192
,
108761
(
2020
).
You do not currently have access to this content.