Experiments and numerical simulations of shock wave/turbulent boundary layer interaction (STBLI) disturbed by arc plasma energy deposition (APED) were carried out in this paper. The experiments were conducted in a M =2.497 wind tunnel. Both the flow structures and the evolution process of impinging STBLI disturbed by APED were captured by time-resolved schlieren imaging. The disturbance effects of APED on supersonic flow without STBLI were studied with different capacitor stored energies. Furthermore, under the same capacitor stored energy, the impinging STBLI control with APED were explored in different flow deflection angles. The experimental results indicated that thermal bubbles induced by APED had a high penetration depth and impacted the STBLI seriously. Compared to the incident shock wave, the separation shock wave was more sensitive to the influence of APED and showed significant instability. With equivalent energy deposited into the flow, the ability of APED to disturb the impinging STBLI was decreased as the flow deflection angle increased, and the separation shock wave had a smaller position change and shorter recovery time. The direct numerical simulation results showed that the APED added in a flow field can hinder the velocity development of the turbulent boundary layer. The unsteadiness of separation shock waves was induced by both thermal bubbles and blast waves, and the thermal bubbles' effects were dominant. They would modify the compressibility of the boundary layer and enlarge the separation zone, which contributed to the separation shock wave's dispersion and movement.

1.
J.
Poggie
,
N. J.
Bisek
, and
R. L.
Kimmel
, “
Spectral characteristics of separation shock unsteadiness
,”
AIAA J.
53
(
1
),
200
214
(
2015
).
2.
S.
Im
,
H.
Do
, and
M. A.
Cappelli
, “
Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow
,”
Appl. Phys. Lett.
53
,
041503
(
2010
).
3.
Y.
Zhuang
,
H.-J.
Tan
,
X.
Li
,
F.-J.
Sheng
, and
Y.-C.
Zhang
, “
Gortler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow
,”
Phys. Fluids
30
,
061702
(
2018
).
4.
X.
Xiang
and
H.
Babinsky
, “
Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels
,”
J. Fluid Mech.
862
,
1060
1083
(
2019
).
5.
F.-J.
Sheng
,
H.-J.
Tan
,
Y.
Zhuang
,
H.-X.
Huang
,
H.
Chen
, and
W.-X.
Wang
, “
Visualization of conical vortex and shock in swept shock/turbulent boundary layer interaction flow
,”
J. Visualization
21
,
909
914
(
2018
).
6.
M. Y.
Ali
,
F. S.
Alvi
, and
R.
Kumar
, “
Studies on the influence of steady microactuators on shock-wave/boundary-layer interaction
,”
AIAA J.
51
(
12
),
2753
2762
(
2013
).
7.
W.
Huang
,
H.
Wu
,
Y.-G.
Yang
,
L.
Yan
, and
S.-B.
Li
, “
Recent advances in the shock wave/boundary layer interaction and its control in internal and external flow
,”
Acta Astronaut.
174
,
103
(
2020
).
8.
R. R.
Martis
and
A.
Misra
, “
Separation attenuation in swept shock wave–boundary-layer interactions using different microvortex generator geometries
,”
Shock Waves
27
,
747
760
(
2017
).
9.
S. B.
Verma
and
A.
Hadjadj
, “
Supersonic flow control
,”
Shock Waves
25
,
443
449
(
2015
).
10.
Y. G.
Utkin
,
S.
Keshav
,
J.-H.
Kim
,
J.
Kastner
,
I. V.
Adamovich
, and
M.
Samimy
, “
Development and use of localized arc filament plasma actuators for high-speed flow control
,”
J. Phys. D
40
,
685
694
(
2007
).
11.
P. N.
Kazanskii
,
I. A.
Moralev
,
A. A.
Firsov
,
V. A.
Bityurin
,
A. N.
Bocharov
, and
S. B.
Leonov
, “
Experimental study of vortices generation with pair of counter-moving pulsed arcs
,” AIAA Paper No. 2019-0051,
2019
.
12.
W.
Hongyu
,
L.
Jun
,
J.
Di
,
Z.
Zhibo
,
T.
Mengxiao
, and
W.
Yun
, “
Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array
,”
Int. J. Heat Fluid Flow
67
,
133
137
(
2017
).
13.
H.
Yan
and
D.
Gaitonde
, “
Effect of thermally induced perturbation in supersonic boundary layers
,”
Phys. Fluids
22
,
064101
(
2010
).
14.
Z.
Zhang
,
X.
Zhang
,
Y.
Wu
,
M.
Jia
,
D.
Jin
,
Z.
Sun
, and
Y.
Li
, “
Experimental research on the shock wave control based on one power supply driven plasma synthetic jet actuator array
,”
Acta Astronaut.
171
,
359
368
(
2020
).
15.
H.
Zong
,
M.
Chiatto
,
M.
Kotsonis
, and
L.
de Luca
, “
Plasma synthetic jet actuators for active flow control
,”
Actuators
7
,
77
(
2018
).
16.
K. V.
Anderson
and
D. D.
Knight
, “
Plasma jet for flight control
,”
AIAA J.
50
(
9
),
1855
1872
(
2012
).
17.
Y.
Zhou
,
Z. X.
Xia
, and
Z. B.
Luo
, “
Effect of three-electrode plasma synthetic jet actuator on shock wave control
,”
Sci. China Technol. Sci.
60
,
146
(
2017
).
18.
T.
Mengxiao
,
W.
Yun
,
W.
Hongyu
,
G.
Shanguang
,
S.
Zhengzhong
, and
S.
Jiaming
, “
Characterization of transverse plasma jet and its effects on ramp induced separation
,”
Exp. Therm. Fluid Sci.
99
,
584
594
(
2018
).
19.
M.
Samimy
,
I.
Adamovich
,
B.
Webb
,
J.
Kastner
,
J.
Hileman
,
S.
Keshav
, and
P.
Palm
, “
Development and characterization of plasma actuators for high-speed jet control
,”
Exp. Fluids
37
(
4
),
577
(
2004
).
20.
T.
Gan
 et al, “
Shock wave boundary layer interaction controlled by surface arc plasma actuators
,”
Phys. Fluids
30
,
055107
(
2018
).
21.
M.
Tang
 et al, “
Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control
,”
Phys. Fluids
32
,
076104
(
2020
).
22.
H.
Wang
,
J.
Li
,
D.
Jin
,
H.
Dai
,
T.
Gan
, and
Y.
Wu
, “
Effect of a transverse plasma jet on a shock wave induced by a ramp
,”
Chin. J. Aeronaut.
30
(
6
),
1854
1865
(
2017
).
23.
M.
Tang
,
Y.
Wu
,
H.
Wang
,
D.
Jin
,
S.
Guo
, and
T.
Gan
, “
Effects of capacitance on a plasma synthetic jet actuator with a conical cavity
,”
Sens. Actuators, A
276
,
284
295
(
2018
).
24.
X. L.
Li
,
D. X.
Fu
, and
Y. W.
Ma
, “
Acoustic calculation for supersonic turbulent boundary layer flow
,”
Chin. Phys. Lett.
26
(
9
),
094701
(
2009
).
25.
R.
Joarder
,
U. P.
Padhi
,
A. P.
Singh
, and
H.
Tummalapalli
, “
Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body
,”
Int. J. Heat Mass Transfer
105
,
723
740
(
2017
).
26.
G.
Yang
,
Y.
Yao
,
J.
Fang
,
T.
Gan
,
Q.
Li
, and
L.
Lu
, “
Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control
,”
Chin. J. Aeronaut.
29
(
3
),
617
629
(
2016
).
27.
E.
Bohr
,
J.
Bailon-Cuba
,
K.
Jansen
 et al, “
Inflow generation technique of large eddy simulation using equilibrium similarity of analysis
,” AIAA Paper No. 2005-4672,
2005
.
28.
J. R.
Edwards
,
J.
Choi
, and
J. A.
Boles
, “
Large-eddy/Reynolds-averaged Navier-Stokes simulations of a Mach 5 corner interaction
,”
AIAA J.
46
(
4
),
977
991
(
2008
).
29.
X. H.
Wu
and
P.
Moin
, “
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
,”
J. Fluid Mech.
630
,
5
41
(
2009
).
30.
L. P.
Erm
and
P. N.
Joubert
, “
Low-Reynolds-number turbulent boundary layers
,”
J. Fluid Mech.
230
,
1
44
(
1991
).
You do not currently have access to this content.