A theoretical analysis, based on the self-similar velocity and buoyancy profiles for plumes in the far field region, is conducted to show how buoyancy dually shapes the flow behavior. In particular, it is shown that while buoyancy flux makes a positive contribution to the mean kinetic energy flux, buoyancy also enhances the momentum flux, through which the mean shear is enhanced. This amplifies the loss of mean kinetic energy into turbulent kinetic energy. The ability of buoyancy to increase the range of flow length scales is discussed in terms of its impact on the evolutionary dynamics of the flow structures. It is also shown, as a result of the scaling laws that follow from the analysis, that the ability of buoyancy to strengthen the eddy vorticity in plumes is primarily through its leading order effect of enhancing the mean flow, and hence the mean shear, and less so through its lower order contributions to the baroclinic component of torque. We then provide a perspective on how the small-scale nibbling contribution to the entrainment process is affected by such buoyancy-induced modifications to the mean flow. Finally, key takeaways from the analysis are juxtaposed with the modern-day view provided by the literature on the entrainment process to propose a mechanistic picture of buoyancy-modified entrainment in plumes.

1.
R. B.
Stothers
, “
Turbulent atmospheric plumes above line sources with an application to volcanic fissure eruptions on the terrestrial planets
,”
J. Atmos. Sci.
46
,
2662
2670
(
1989
).
2.
J.
Wettlaufer
,
M. G.
Worster
, and
H. E.
Huppert
, “
Natural convection during solidification of an alloy from above with application to the evolution of sea ice
,”
J. Fluid Mech.
344
,
291
316
(
1997
).
3.
A.
Woods
, “
A model of the plume above basaltic fissure eruptions
,”
Geophys. Res. Lett.
20
(
12
),
1115
1118
, (
1993
).
4.
E.
List
, “
Turbulent jets and plumes
,”
Annu. Rev. Fluid Mech.
14
,
189
212
(
1982
).
5.
H. B.
Fisher
,
E. J.
List
,
C. R.
Koh
,
J.
Imberger
, and
N. H.
Brooks
,
Mixing in Inland and Coastal Waters
(
Academic Press
,
1979
).
6.
L.
Prandtl
, “
7. Bericht über untersuchungen zur ausgebildeten turbulenz
,”
ZAMM-J. Appl. Math. Mech.
5
,
136
139
(
1925
).
7.
G. I.
Taylor
, “
The transport of vorticity and heat through fluids in turbulent motion
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
135
,
685
702
(
1932
).
8.
A. F.
Hussain
, “
Coherent structures–reality and myth
,”
Phys. Fluids
26
,
2816
2850
(
1983
).
9.
B.
Morton
,
G. I.
Taylor
, and
J. S.
Turner
, “
Turbulent gravitational convection from maintained and instantaneous sources
,”
Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci.
234
,
1
23
(
1956
).
10.
M.
Mungal
and
D.
Hollingsworth
, “
Organized motion in a very high Reynolds number jet
,”
Phys. Fluids A
1
,
1615
1623
(
1989
).
11.
D. J.
Shlien
, “
Observations of dispersion of entrained fluid in the self-preserving region of a turbulent jet
,”
J. Fluid Mech.
183
,
163
173
(
1987
).
12.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford university Press
,
2015
).
13.
H.
Burridge
,
D.
Parker
,
E.
Kruger
,
J.
Partridge
, and
P.
Linden
, “
Conditional sampling of a high Péclet number turbulent plume and the implications for entrainment
,”
J. Fluid Mech.
823
,
26
56
(
2017
).
14.
S.
Corrsin
and
A. L.
Kistler
, “
Free-stream boundaries of turbulent flows
,”
Report No. NACA-TN-3133
,
Johns Hopkins University
,
Baltimore MD
,
1955
.
15.
J.
Westerweel
,
C.
Fukushima
,
J.
Pedersen
, and
J.
Hunt
, “
Mechanics of the turbulent-nonturbulent interface of a jet
,”
Phys. Rev. Lett.
95
,
174501
(
2005
).
16.
J.
Philip
and
I.
Marusic
, “
Large-scale eddies and their role in entrainment in turbulent jets and wakes
,”
Phys. Fluids
24
,
055108
(
2012
).
17.
T.
Watanabe
,
R.
Jaulino
,
R.
Taveira
,
C.
da Silva
,
K.
Nagata
, and
Y.
Sakai
, “
Role of an isolated eddy near the turbulent/non-turbulent interface layer
,”
Phys. Rev. Fluids
2
,
094607
(
2017
).
18.
J.
Jimenez
and
A. A.
Wray
, “
On the characteristics of vortex filaments in isotropic turbulence
,”
J. Fluid Mech.
373
,
255
285
(
1998
).
19.
C. B.
da Silva
and
R. J. N.
dos Reis
, “
The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet
,”
Philos. Trans. R. Soc. A Math., Phys. Eng. Sci.
369
,
738
753
(
2011
).
20.
R. R.
Taveira
and
C. B.
da Silva
, “
Kinetic energy budgets near the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
25
,
015114
(
2013
).
21.
C.
Priestley
and
F.
Ball
, “
Continuous convection from an isolated source of heat
,”
Q. J. R. Meteorol. Soc.
81
,
144
157
(
1955
).
22.
B.
Morton
, “
Forced plumes
,”
J. Fluid Mech.
5
,
151
163
(
1959
).
23.
P. N.
Papanicolaou
and
E. J.
List
, “
Investigations of round vertical turbulent buoyant jets
,”
J. Fluid Mech.
195
,
341
391
(
1988
).
24.
A.
Shabbir
and
W. K.
George
, “
Experiments on a round turbulent buoyant plume
,”
J. Fluid Mech.
275
,
1
32
(
1994
).
25.
A. W.
Woods
, “
Turbulent plumes in nature
,”
Annu. Rev. Fluid Mech.
42
,
391
412
(
2010
).
26.
M.
van Reeuwijk
,
P.
Salizzoni
,
G. R.
Hunt
, and
J.
Craske
, “
Turbulent transport and entrainment in jets and plumes: A DNS study
,”
Phys. Rev. Fluids
1
,
074301
(
2016
).
27.
M.
van Reeuwijk
and
J.
Craske
, “
Energy-consistent entrainment relations for jets and plumes
,”
J. Fluid Mech.
782
,
333
355
(
2015
).
28.
F.
Plourde
,
M. V.
Pham
,
S. D.
Kim
, and
S.
Balachandar
, “
Direct numerical simulations of a rapidly expanding thermal plume: Structure and entrainment interaction
,”
J. Fluid Mech.
604
,
99
123
(
2008
).
29.
K.
Sreenivas
and
A. K.
Prasad
, “
Vortex-dynamics model for entrainment in jets and plumes
,”
Phys. Fluids
12
,
2101
2107
(
2000
).
30.
B.
Gebhart
,
Y.
Jaluria
,
R. L.
Mahajan
, and
B.
Sammakia
,
Buoyancy-Induced Flows and Transport
(
NASA
,
1988
); available at https://www.osti.gov/biblio/6546182.
31.
W. K.
George
, Jr
,
R. L.
Alpert
, and
F.
Tamanini
, “
Turbulence measurements in an axisymmetric buoyant plume
,”
Int. J. Heat Mass Transfer
20
,
1145
1154
(
1977
).
32.
J.
Turner
, “
Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows
,”
J. Fluid Mech.
173
,
431
471
(
1986
).
33.
C. J.
Chen
and
W.
Rodi
, “
Vertical turbulent buoyant jets: A review of experimental data
,”
Report No. NASA STI/Recon A 80
, 23073,
1980
.
34.
P.
Beuther
,
S.
Capp
, and
W.
George
, “
Momentum and temperature balance measurements in an axisymmetric turbulent plume
,”
Report No. ASME Paper 79-HT
,
1979
.
35.
J. S.
Turner
and
J. S.
Turner
,
Buoyancy Effects in Fluids
(
Cambridge University Press
,
1979
).
36.
A.
Ezzamel
,
P.
Salizzoni
, and
G. R.
Hunt
, “
Dynamical variability of axisymmetric buoyant plumes
,”
J. Fluid Mech.
765
,
576
611
(
2015
).
37.
H.
Wang
and
A. W-k
Law
, “
Second-order integral model for a round turbulent buoyant jet
,”
J. Fluid Mech.
459
,
397
428
(
2002
).
38.
N. R.
Panchapakesan
and
J. L.
Lumley
, “
Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet
,”
J. Fluid Mech.
246
,
197
223
(
1993
).
39.
S. J.
Kwon
and
I. W.
Seo
, “
Reynolds number effects on the behavior of a non-buoyant round jet
,”
Exp. Fluids
38
,
801
812
(
2005
).
40.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
41.
G.
Hunt
and
T.
Van den Bremer
, “
Classical plume theory: 1937–2010 and beyond
,”
IMA J. Appl. Math.
76
,
424
448
(
2011
).
42.
M.
Wolf
,
M.
Holzner
,
B.
Lüthi
,
D.
Krug
,
W.
Kinzelbach
, and
A.
Tsinober
, “
Effects of mean shear on the local turbulent entrainment process
,”
J. Fluid Mech.
731
,
95
116
(
2013
).
43.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
C. R. Acad. Sci. URSS
30
,
301
305
(
1941
).
44.
W. D.
Smyth
and
J. N.
Moum
, “
Length scales of turbulence in stably stratified mixing layers
,”
Phys. Fluids
12
,
1327
1342
(
2000
).
45.
T.
Watanabe
,
J.
Riley
, and
K.
Nagata
, “
Effects of stable stratification on turbulent/nonturbulent interfaces in turbulent mixing layers
,”
Phys. Rev. Fluids
1
,
044301
(
2016
).
46.
D.
Krug
,
D.
Chung
,
J.
Philip
, and
I.
Marusic
, “
Global and local aspects of entrainment in temporal plumes
,”
J. Fluid Mech.
812
,
222
250
(
2017
).
47.
M.
Holzner
and
M.
van Reeuwijk
, “
The turbulent/nonturbulent interface in penetrative convection
,”
J. Turbul.
18
,
260
270
(
2017
).
48.
M.
van Reeuwijk
,
D.
Krug
, and
M.
Holzner
, “
Small-scale entrainment in inclined gravity currents
,”
Environ. Fluid Mech.
18
,
225
239
(
2018
).
You do not currently have access to this content.