We consider a problem of stability of a membrane of an infinite span and a finite chord length, submerged in a uniform flow of finite depth with free surface. In the shallow water approximation, Nemtsov [“Flutter effect and emission in the region of anomalous and normal Doppler effects,” Radiophys. Quantum Electron. 28(12), 1076–1079 (1985)] has shown that an infinite-chord membrane is susceptible to flutter instability due to the excitation of long gravity waves on the free surface if the velocity of the flow exceeds the phase velocity of the waves and related this phenomenon with the anomalous Doppler effect. In the present work, we derive a full nonlinear eigenvalue problem for an integrodifferential equation for the finite-chord Nemtsov membrane in the finite-depth flow. In the shallow- and deep-water limits, we develop a perturbation theory in the small added mass ratio parameter acting as an effective dissipation to find explicit analytical expressions for the frequencies and the growth rates of the membrane modes coupled to the surface waves. We find an intricate pattern of instability pockets in the parameter space and describe it analytically. The case of an arbitrary depth flow with free surface requires numerical solution of a new non-polynomial nonlinear eigenvalue problem. We propose an original approach combining methods of complex analysis and residue calculus, Galerkin discretization, Newton method, and parallelization techniques implemented in MATLAB to produce high-accuracy stability diagrams within an unprecedented wide range of a system's parameters. We believe that the Nemtsov membrane plays the same paradigmatic role for understanding radiation-induced instabilities as the Lamb oscillator coupled to a string has played for understanding radiation damping.

1.
H.
Lamb
, “
On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium
,”
Proc. London Math. Soc.
32
,
208
211
(
1900
).
2.
A. E. H.
Love
, “
Some illustrations of modes of decay of vibratory motions
,”
Proc. London Math. Soc.
s2-2
,
88
113
(
1905
).
3.
G.
Beck
and
H. M.
Nussenzveig
, “
On the physical interpretation of complex poles of the S-matrix—I
,”
Nuovo Cimento
16
(
3
),
416
449
(
1960
).
4.
F.
Ursell
, “
The decay of the free motion of a floating body
,”
J. Fluid Mech.
19
(
2
),
305
319
(
1964
).
5.
Causality and dispersion relations
, Mathematics in Science and Engineering, edited by
H. M.
Nussenzveig
(
Academic Press
,
New York
,
1972
), Vol. 95.
6.
D. G.
Crighton
, “
The 1988 Rayleigh medal lecture: Fluid loading—The interaction between sound and vibration?
,”
J. Sound Vib.
133
(
l
),
1
27
(
1989
).
7.
P. E.
Barbone
and
D. G.
Crighton
, “
Vibrational modes of submerged elastic bodies
,”
Appl. Acoust.
43
,
295
317
(
1994
).
8.
A.
Soffer
and
M. I.
Weinstein
, “
Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations
,”
Invent. Math.
136
,
9
74
(
1999
).
9.
A.
Soffer
, “
Dissipation through dispersion
,” in
Nonlinear Dynamics and Renormalization Group, CRM Proceedings and Lecture Notes
Vol. 27, edited by
I. M.
Sigal
and
C.
Sulem (
American Mathematical Society
,
Providence, RI
,
2001
).
10.
A. M.
Shapiro
and
M. I.
Weinstein
, “
Radiative decay of bubble oscillations in a compressible fluid
,”
SIAM J. Math. Anal.
43
(
2
),
828
876
(
2011
).
11.
O.
Costin
,
S.
Tanveer
, and
M. I.
Weinstein
, “
The lifetime of shape oscillations of a bubble in an unbounded, inviscid, and compressible fluid with surface tension
,”
SIAM J. Math. Anal.
45
(
5
),
2924
2936
(
2013
).
12.
J.
Fröhlich
and
Z.
Gang
, “
Emission of Cherenkov radiation as a mechanism for Hamiltonian friction
,”
Adv. Math.
264
,
183
235
(
2014
).
13.
C. E.
Wayne
and
M. I.
Weinstein
, “
Dynamics of partial differential equations
,”
Frontiers in Applied Dynamical Systems: Reviews and Tutorials
(
Springer
,
Cham
,
2015
), Vol.
3
.
14.
P. J.
Olver
and
N. E.
Sheils
, “
Dispersive Lamb systems
,”
J. Geometric Mech.
11
(
2
),
239
254
(
2019
).
15.
M.
Bertini
,
D.
Noja
, and
A.
Posilicano
, “
Dynamics and Lax-Phillips scattering for generalized Lamb models
,”
J. Phys. A
39
,
15173
15195
(
2006
).
16.
J. A.
Adam
,
Rays, Waves, and Scattering: Topics in Classical Mathematical Physics
,
Princeton Series in Applied Mathematics
Vol.
56
(
Princeton University Press
,
Princeton
,
2017
).
17.
S.
Rotter
and
S.
Gigan
, “
Light fields in complex media: Mesoscopic scattering meets wave control
,”
Rev. Mod. Phys.
89
(
1
),
015005
(
2017
).
18.
A. M.
Bloch
,
M. I.
Weinstein
, and
P.
Hagerty
, “
Radiation induced instability
,”
SIAM J. Appl. Math.
64
(
2
),
484
524
(
2004
).
19.
A. M.
Bloch
,
P.
Hagerty
,
A. G.
Rojo
, and
M. I.
Weinstein
, “
Gyroscopically stabilized oscillators and heat baths
,”
J. Stat. Phys.
115
,
1073
1100
(
2004
).
20.
S.
Chandrasekhar
, “
Solutions of two problems in the theory of gravitational radiation
,”
Phys. Rev. Lett.
24
(
11
),
611
615
(
1970
).
21.
L.
Lindblom
and
S. L.
Detweiler
, “
On the secular instabilities of the Maclaurin spheroids
,”
Astrophys. J.
211
,
565
567
(
1977
).
22.
B. F.
Schutz
, “
Perturbations and stability of rotating stars—III. Perturbation theory for eigenvalues
,”
Mon. Not. R. Astron. Soc.
190
,
21
31
(
1980
).
23.
S.
Chandrasekhar
, “
On stars, their evolution and their stability
,”
Science
226
(
4674
),
497
505
(
1984
).
24.
N.
Andersson
, “
Gravitational waves from instabilities in relativistic stars
,”
Classical Quantum Gravity
20
,
R105
R144
(
2003
).
25.
M. A.
Belyaev
, “
Incompressible modes excited by supersonic shear in boundary layers: Acoustic CFS instability
,”
Astrophys. J.
835
,
238
(
2017
).
26.
S.
Le Dizès
and
P.
Billant
, “
Radiative instability in stratified vortices
,”
Phys. Fluids
21
,
096602
(
2009
).
27.
A.
Orozco Estrada
,
R. C.
Cruz Gòmez
,
A.
Cros
, and
P.
Le Gal
, “
Coalescence of lenticular anticyclones in a linearly stratified rotating fluid
,”
Geophys. Astrophys. Fluid Dyn.
114
(
4–5
),
504
523
(
2020
).
28.
J.
Labarbe
and
O. N.
Kirillov
, “
Membrane flutter induced by radiation of surface gravity waves on a uniform flow
,”
J. Fluid Mech.
901
,
A4
(
2020
).
29.
B. E.
Nemtsov
, “
Flutter effect and emission in the region of anomalous and normal Doppler effects
,”
Radiophys. Quantum Electron.
28
(
12
),
1076
1079
(
1985
).
30.
M. P.
Paidoussis
,
Fluid-Structure Interactions: Slender Structures and Axial Flow: 1
, 2nd ed. (
Elsevier Academic Press
,
Cambridge
,
2013
).
31.
R.
Porter
, “
Linearised water wave problems involving submerged horizontal plates
,”
Appl. Ocean Res.
50
,
91
109
(
2015
).
32.
N.
Islam
,
S.
Kundu
, and
R.
Gayen
, “
Scattering and radiation of water waves by a submerged rigid disc in a two-layer fluid
,”
Proc. R. Soc. A
475
,
20190331
(
2019
).
33.
T. D.
Williams
and
M. H.
Meylan
, “
The Wiener-Hopf and residue calculus solutions for a submerged semi-infinite elastic plate
,”
J. Eng. Math.
75
,
81
106
(
2012
).
34.
I. H.
Cho
and
M. H.
Kim
, “
Interactions of a horizontal flexible membrane with oblique incident waves
,”
J. Fluid Mech.
367
,
139
161
(
1998
).
35.
S.
Alben
, “
The flapping-flag instability as a nonlinear eigenvalue problem
,”
Phys. Fluids
20
,
104106
(
2008
).
36.
M. J.
Shelley
and
J.
Zhang
, “
Flapping and bending bodies interacting with fluid flows
,”
Annu. Rev. Fluid Mech.
43
,
449
465
(
2011
).
37.
J.
Mougel
and
S.
Michelin
, “
Flutter and resonances of a flag near a free surface
,”
J. Fluids Struct.
96
,
103046
(
2020
).
38.
V. V.
Vedeneev
, “
Propagation of waves in a layer of a viscoelastic material underlying a layer of a moving fluid
,”
J. Appl. Math. Mech.
80
,
225
243
(
2016
).
39.
A. V.
Metrikin
, “
Unstable lateral oscillations of an object moving uniformly along an elastic guide as a result of an anomalous Doppler effect
,”
Acoust. Phys.
40
,
85
89
(
1994
).
40.
A. V.
Gaponov-Grekhov
,
I. S.
Dolina
, and
L. A.
Ostrovskii
, “
The anomalous Doppler effect and the radiation instability of oscillator motion in hydrodynamics
,”
Dokl. Akad. Nauk SSSR
268
(
4
),
827
831
(
1983
) (in Russian).
41.
B. S.
Abramovich
,
E. A.
Mareev
, and
B. E.
Nemtsov
, “
Instability in the oscillations of a moving oscillator while it radiates surface and internal waves
,”
Fluid Dyn.
21
(
1
),
147
149
(
1986
).
42.
V. L.
Ginzburg
, “
Radiation by uniformly moving sources (Vavilov–Cherenkov effect, transition radiation, and other phenomena)
,”
Phys.-Usp.
39
(
10
),
973
982
(
1996
).
43.
V. L.
Ginzburg
and
I. M.
Frank
, “
About Doppler effect at superlight velocity
,”
Dokl. Akad. Nauk SSSR
56
,
583
586
(
1947
).
44.
M. V.
Nezlin
, “
Negative-energy waves and the anomalous Doppler effect
,”
Sov. Phys. Usp.
19
,
946
954
(
1976
).
45.
I. E.
Tamm
, “
General characteristics of Vavilov–Cherenkov radiation
,”
Science
131
(
3395
),
206
210
(
1960
).
46.
J. D.
Bekenstein
and
M.
Schiffer
, “
The many faces of superradiance
,”
Phys. Rev. D
58
,
064014
(
1998
).
47.
I.
Carusotto
and
G.
Rousseaux
, “
The Cerenkov effect revisited: From swimming ducks to zero modes in gravitational analogues
,” in
Analogue Gravity Phenomenology
, edited by
D.
Faccio
,
F.
Belgiorno
,
S.
Cacciatori
,
V.
Gorini
,
S.
Liberati
, and
U.
Moschella
, Lecture Notes in Physics Vol.
870
(
Springer
,
2013
).
48.
X.
Shi
,
X.
Lin
,
I.
Kaminer
,
F.
Gao
,
Z.
Yang
,
J. D.
Joannopoulos
,
M.
Soljacic
, and
B.
Zhang
, “
Superlight inverse Doppler effect
,”
Nat. Phys.
14
,
1001
1005
(
2018
).
49.
H.
Minami
, “
Added mass of a membrane vibrating at finite amplitude
,”
J. Fluids Struct.
12
,
919
932
(
1998
).
50.
O. N.
Kirillov
,
Nonconservative Stability Problems of Modern Physics
, 2nd ed.,
De Gruyter Studies in Mathematical Physics Vol. 14 (De Gruyter
,
Berlin/Boston
,
2021
).
51.
O. N.
Kirillov
and
F.
Verhulst
, “
Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella?
,”
Z. Angew. Math. Mech.
90
(
6
),
462
488
(
2010
).
52.
R. S.
MacKay
, “
Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation
,”
Phys. Lett. A
155
,
266
268
(
1991
).
53.
G.
Haller
, “
Gyroscopic stability and its loss in systems with two essential coordinates
,”
Int. J. Non-Linear Mech.
27
,
113
127
(
1992
).
54.
A. M.
Bloch
,
P. S.
Krishnaprasad
,
J. E.
Marsden
, and
T. S.
Ratiu
, “
Dissipation induced instabilities
,”
Ann. Inst. Henri Poincaré
11
,
37
90
(
1994
).
55.
H.
Broer
and
M.
Levi
, “
Geometrical aspects of stability theory for Hill's equations
,”
Arch. Rational Mech. Anal.
131
,
225
240
(
1995
).
56.
V. V.
Vedeneev
, “
Panel flutter at low supersonic speeds
,”
J. Fluids Struct.
29
,
79
96
(
2012
).
57.
V.
Mehrmann
and
H.
Voss
, “
Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods
,”
GAMM-Mitt.
27
(
2
),
121
152
(
2004
).
58.
D.
Bindel
and
A.
Hood
, “
Localization theorems for nonlinear eigenvalue problems
,”
SIAM Rev.
57
(
4
),
585
607
(
2015
).
59.
S.
Güttel
and
F.
Tisseur
, “
The nonlinear eigenvalue problem
,”
Acta Numer.
26
,
1
94
(
2017
).
60.
G. A.
Mensah
,
A.
Orchini
, and
J. P.
Moeck
, “
Perturbation theory of nonlinear, non-self-adjoint eigenvalue problems: Simple eigenvalues
,”
J. Sound Vib.
473
,
115200
(
2020
).
61.
G. H.
Golub
and
J. H.
Welsch
, “
Calculation of Gauss quadrature rules
,”
Math. Comput.
23
(
106
),
221
230
(
1969
).
62.
M.
Drela
,
Flight Vehicle Aerodynamics
(
The MIT Press
,
Cambridge
,
2014
).
63.
M.
Schiffer
, “
Analytical theory of subsonic and supersonic flows
,” in
Fluid Dynamics/Strömungsmechanik
, edited by (
Springer
,
Berlin
,
1960
).
64.
P. J.
Olver
,
Introduction to Partial Differential Equations
(
Springer
,
Cham
,
2014
).
65.
M. S.
Ablowitz
and
A. S.
Fokas
, “
Complex variables
,” in
Introduction and Applications
, Cambridge Texts in Applied Mathematics (
Cambridge University Press
,
Cambridge
,
2003
).
66.
A.
Greenbaum
,
R.-C.
Li
, and
M. L.
Overton
, “
First-order perturbation theory for eigenvalues and eigenvectors
,”
SIAM Rev.
62
,
463
482
(
2020
).
67.
L. M.
Delves
and
J. N.
Lyness
, “
A numerical method for locating the zeros of an analytic function
,”
Math. Comput.
21
(
100
),
543
560
(
1967
).
68.
J.
Mougel
,
D.
Fabre
,
L.
Lacaze
, and
T.
Bohr
, “
On the instabilities of a potential vortex with a free surface
,”
J. Fluid Mech.
824
,
230
264
(
2017
).
You do not currently have access to this content.