This study proposes a new physics-constrained data-driven approach for sensitivity analysis and uncertainty quantification of large-scale chaotic Partial Differential Equations (PDEs). Unlike conventional sensitivity analysis, the proposed approach can manipulate the unsteady sensitivity function (i.e., tangent) for PDE-constrained optimizations. In this new approach, high-dimensional governing equations from physical space are transformed into an unphysical space (i.e., Hilbert space) to develop a closure model in the form of a Reduced-Order Model (ROM). This closure model is derived explicitly from the governing equations to set strong constraints on manifolds in Hilbert space. Afterward, a new data sampling method is proposed to build a data-driven approach for this framework. A series of least squares minimizations are set in the form of a novel auto-encoder system to solve this closure model. To compute sensitivities, least-squares shadowing minimization is applied to the ROM. It is shown that the proposed approach can capture sensitivities for large-scale chaotic dynamical systems, where finite difference approximations fail.

1.
F. D.
Witherden
,
B. C.
Vermeire
, and
P. E.
Vincent
, “
Heterogeneous computing on mixed unstructured grids with PyFR
,”
Comput. Fluids
120
,
173
186
(
2015
).
2.
J.
Park
,
F.
Witherden
, and
P.
Vincent
, “
High-order implicit large-eddy simulations of flow over a NACA 0021 aerofoil
,”
AIAA J.
55
(
7
),
2186
2197
(
2017
).
3.
M.-F.
Tang
,
G.-H.
Dong
,
T.-J.
Xu
,
C.
Wei Bi
, and
S.
Wang
, “
Large-eddy simulations of flow past cruciform circular cylinders in subcritical Reynolds numbers
,”
Ocean Eng.
220
,
108484
(
2021
).
4.
G.
Zhu
,
S.
Huang
, and
Q.
Li
, “
Large-eddy simulation of the inflow turbulence transport and aerodynamics of a rectangular 5:1 cylinder with high-order numerical methods
,”
J. Wind Eng. Ind. Aerodyn.
207
,
104366
(
2020
).
5.
M.
Bovand
,
S.
Rashidi
,
M.
Dehghan
,
J. A.
Esfahani
, and
M.
Valipour
, “
Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field
,”
J. Magn. Magn. Mater.
385
,
198
206
(
2015
).
6.
H. R.
Karbasian
and
K. C.
Kim
, “
Numerical investigations on flow structure and behavior of vortices in the dynamic stall of an oscillating pitching hydrofoil
,”
Ocean Eng.
127
,
200
211
(
2016
).
7.
X.
Yang
,
G.
He
, and
X.
Zhang
, “
Large-eddy simulation of flows past a flapping airfoil using immersed boundary method
,”
Sci. China Phys., Mech. Astron.
53
(
6
),
1101
1108
(
2010
).
8.
P.
Benard
,
A.
Vir
,
V.
Moureau
,
G.
Lartigue
,
L.
Beaudet
,
P.
Deglaire
, and
L.
Bricteux
, “
Large-Eddy simulation of wind turbines wakes including geometrical effects
,”
Comput. Fluids
173
,
133
139
(
2018
).
9.
J.
Esfahani
,
E.
Barati
, and
H.
Karbasian
, “
Fluid structures of flapping airfoil with elliptical motion trajectory
,”
Comput. Fluids
108
,
142
155
(
2015
).
10.
H.
Karbasian
and
J.
Esfahani
, “
Enhancement of propulsive performance of flapping foil by fish-like motion pattern
,”
Comput. Fluids
156
,
305
316
(
2017
).
11.
H. R.
Karbasian
,
J.
Esfahani
, and
E.
Barati
, “
Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation
,”
Renewable Energy
81
,
816
824
(
2015
).
12.
H.
Nakayama
,
T.
Takemi
, and
H.
Nagai
, “
Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations
,”
Atmos. Sci. Lett.
13
(
3
),
180
186
(
2012
).
13.
S. M.
Moreton
,
D.
Ferreira
,
M. J.
Roberts
, and
H. T.
Hewitt
, “
Evaluating surface eddy properties in coupled climate simulations with ‘eddy-present’and ‘eddy-rich’ ocean resolution
,”
Ocean Modell.
147
,
101567
(
2020
).
14.
O.
Temel
,
C. B.
Senel
,
S.
Porchetta
,
D.
Muñoz-Esparza
,
M. A.
Mischna
,
T.
Van Hoolst
,
J.
van Beeck
, and
Ö.
Karatekin
, “
Large eddy simulations of the Martian convective boundary layer: Towards developing a new planetary boundary layer scheme
,”
Atmos. Res.
250
,
105381
(
2021
).
15.
A. N.
Kolmogorov
,
V.
Levin
,
J. C. R.
Hunt
,
O. M.
Phillips
, and
D.
Williams
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Proc. Roy. Soc. London, Ser. A
434
(
1890
),
9
13
(
1991
).
16.
A.
Jameson
, “
Aerodynamic design via control theory
,”
J. Sci. Comput.
3
(
3
),
233
260
(
1988
).
17.
T. R.
Bewley
, “
Flow control: New challenges for a new renaissance
,”
Prog. Aerosp. Sci.
37
(
1
),
21
58
(
2001
).
18.
T. R.
Bewley
,
P.
Moin
, and
R.
Temam
, “
DNS-based predictive control of turbulence: An optimal benchmark for feedback algorithms
,”
J. Fluid Mech.
447
(
2
),
179
225
(
2001
).
19.
B.
Mohseni-Gharyehsafa
,
J. A.
Esfahani
,
K. C.
Kim
, and
H.
Ouerdane
, “
Soft computing analysis of thermohydraulic enhancement using twisted tapes in a flat-plate solar collector: Sensitivity analysis and multi–objective optimization
,”
J. Cleaner Prod.
314
,
127947
(
2021
).
20.
C. J.
Willmott
,
C. M.
Rowe
, and
W. D.
Philpot
, “
Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring
,”
Am. Cartogr.
12
(
1
),
5
16
(
1985
).
21.
D. S.
Cohan
,
A.
Hakami
,
Y.
Hu
, and
A. G.
Russell
, “
Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis
,”
Environ. Sci. Technol.
39
(
17
),
6739
6748
(
2005
).
22.
L.
Hannah
,
G. F.
Midgley
, and
D.
Millar
, “
Climate change-integrated conservation strategies
,”
Global Ecol. Biogeogr.
11
(
6
),
485
495
(
2002
).
23.
D. J.
Lea
,
M. R.
Allen
, and
T. W.
Haine
, “
Sensitivity analysis of the climate of a chaotic system
,”
Tellus A
52
(
5
),
523
532
(
2000
).
24.
G.
Eyink
,
T.
Haine
, and
D.
Lea
, “
Ruelle's linear response formula, ensemble adjoint schemes and Lévy flights
,”
Nonlinearity
17
(
5
),
1867
(
2004
).
25.
P. J.
Blonigan
,
S. A.
Gomez
, and
Q.
Wang
, “
Least squares shadowing for sensitivity analysis of turbulent fluid flows
,” in
52nd Aerospace Sciences Meeting
(
AIAA
,
2014
), p.
1426
.
26.
J. R.
Martins
,
J. J.
Alonso
, and
J. J.
Reuther
, “
A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design
,”
Optim. Eng.
6
(
1
),
33
62
(
2005
).
27.
Y.
Shi
,
C. A.
Mader
,
S.
He
,
G. L.
Halila
, and
J. R.
Martins
, “
Natural laminar-flow airfoil optimization design using a discrete adjoint approach
,”
AIAA J.
58
(
11
),
4702
4722
(
2020
).
28.
D. W.
Zingg
,
M.
Nemec
, and
T. H.
Pulliam
, “
A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization
,”
Eur. J. Comput. Mech.
17
(
1–2
),
103
126
(
2008
).
29.
B. C.
Vermeire
and
P. E.
Vincent
, “
On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation
,”
J. Comput. Phys.
327
,
368
388
(
2016
).
30.
B. C.
Vermeire
,
F. D.
Witherden
, and
P. E.
Vincent
, “
On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools
,”
J. Comput. Phys.
334
,
497
521
(
2017
).
31.
P. E.
Vincent
,
P.
Castonguay
, and
A.
Jameson
, “
A new class of high-order energy stable flux reconstruction schemes
,”
J. Sci. Comput.
47
(
1
),
50
72
(
2011
).
32.
W.
Trojak
, “
Numerical analysis of flux reconstruction
,” Ph.D. thesis (
University of Cambridge
,
2020
).
33.
P. J.
Blonigan
,
P.
Fernandez
,
S. M.
Murman
,
Q.
Wang
,
G.
Rigas
, and
L.
Magri
, “
Toward a chaotic adjoint for LES
,” preprint arXiv:1702.06809 (
2017
).
34.
L.
Keefe
,
P.
Moin
, and
J.
Kim
, “
The dimension of attractors underlying periodic turbulent Poiseuille flow
,”
J. Fluid Mech.
242
,
1
29
(
1992
).
35.
T.
Léonard
,
L. Y.
Gicquel
,
N.
Gourdain
, and
F.
Duchaine
, “
Steady/unsteady Reynolds-averaged Navier–Stokes and large eddy simulations of a turbine blade at high subsonic outlet Mach number
,”
J. Turbomach.
137
(
4
),
041001
(
2015
).
36.
H. R.
Karbasian
and
B. C.
Vermeire
, “
Gradient-free aerodynamic shape optimization using large eddy simulation
,”
Comput. Fluids
232
,
105185
(
2022
).
37.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
1997
), Vol.
54
.
38.
Q.
Wang
,
R.
Hu
, and
P.
Blonigan
, “
Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations
,”
J. Comput. Phys.
267
,
210
224
(
2014
).
39.
P. J.
Blonigan
,
Q.
Wang
,
E. J.
Nielsen
, and
B.
Diskin
, “
Least-squares shadowing sensitivity analysis of chaotic flow around a two-dimensional airfoil
,”
AIAA J.
56
(
2
),
658
672
(
2018
).
40.
P. J.
Blonigan
and
Q.
Wang
, “
Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems
,”
J. Comput. Phys.
354
,
447
475
(
2018
).
41.
A.
Ni
and
Q.
Wang
, “
Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (NILSS)
,”
J. Comput. Phys.
347
,
56
77
(
2017
).
42.
A.
Ni
,
Q.
Wang
,
P.
Fernandez
, and
C.
Talnikar
, “
Sensitivity analysis on chaotic dynamical systems by finite difference non-intrusive least squares shadowing (FD-NILSS)
,”
J. Comput. Phys.
394
,
615
631
(
2019
).
43.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
(
12
),
4013
4041
(
2017
).
44.
K.
Taira
,
M. S.
Hemati
,
S. L.
Brunton
,
Y.
Sun
,
K.
Duraisamy
,
S.
Bagheri
,
S. T.
Dawson
, and
C.-A.
Yeh
, “
Modal analysis of fluid flows: Applications and outlook
,”
AIAA J.
58
(
3
),
998
1022
(
2020
).
45.
G.
Rozza
and
A.
Manzoni
, “
Model order reduction by geometrical parametrization for shape optimization in computational fluid dynamics
,” in
Proceedings of the ECCOMAS CFD 2010, V European Conference on Computational Fluid Dynamics
(
ECCOMAS
,
2010
), pp.
1
20
.
46.
M. J.
Zahr
and
C.
Farhat
, “
Progressive construction of a parametric reduced-order model for PDE-constrained optimization
,”
Int. J. Numer. Methods Eng.
102
(
5
),
1111
1135
(
2015
).
47.
M.
Bergmann
and
L.
Cordier
, “
Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models
,”
J. Comput. Phys.
227
(
16
),
7813
7840
(
2008
).
48.
K.
Kunisch
and
S.
Volkwein
, “
Proper orthogonal decomposition for optimality systems
,”
ESAIM: Math. Modell. Numer. Anal.
42
(
1
),
1
23
(
2008
).
49.
T.
Bui-Thanh
,
K.
Willcox
, and
O.
Ghattas
, “
Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications
,”
AIAA J.
46
(
10
),
2520
2529
(
2008
).
50.
M. J.
Zahr
and
P.-O.
Persson
, “
An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems
,”
J. Comput. Phys.
326
,
516
543
(
2016
).
51.
K.
Carlberg
,
C.
Bou-Mosleh
, and
C.
Farhat
, “
Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations
,”
Int. J. Numer. Methods Eng.
86
(
2
),
155
181
(
2011
).
52.
K.
Carlberg
,
M.
Barone
, and
H.
Antil
, “
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
,”
J. Comput. Phys.
330
,
693
734
(
2017
).
53.
E. J.
Parish
,
C.
Wentland
, and
K.
Duraisamy
, “
The adjoint Petrov-Galerkin method for non-linear model reduction
,” arXiv:1810.03455 (
2018
).
54.
H. F.
Lui
and
W. R.
Wolf
, “
Construction of reduced order models for fluid flows using deep feedforward neural networks
,” preprint arXiv:1903.05206 (
2019
).
55.
S. L.
Brunton
and
J. N.
Kutz
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
(
Cambridge University Press
,
2019
).
56.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
57.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
58.
B.
Epureanu
, “
A parametric analysis of reduced order models of viscous flows in turbomachinery
,”
J. Fluids Struct.
17
(
7
),
971
982
(
2003
).
59.
A.
Hay
,
J. T.
Borggaard
, and
D.
Pelletier
, “
Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition
,”
J. Fluid Mech.
629
,
41
72
(
2009
).
60.
D.
Amsallem
and
C.
Farhat
, “
Interpolation method for adapting reduced-order models and application to aeroelasticity
,”
AIAA J.
46
(
7
),
1803
1813
(
2008
).
61.
M.
Hairer
and
J. C.
Mattingly
, “
Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing
,”
Ann. Math.
164
,
993
1032
(
2006
).
62.
F.
Flandoli
and
B.
Maslowski
, “
Ergodicity of the 2-D Navier–Stokes equation under random perturbations
,”
Commun. Math. Phys.
172
(
1
),
119
141
(
1995
).
63.
F.
Ginelli
,
P.
Poggi
,
A.
Turchi
,
H.
Chaté
,
R.
Livi
, and
A.
Politi
, “
Characterizing dynamics with covariant Lyapunov vectors
,”
Phys. Rev. Lett.
99
(
13
),
130601
(
2007
).
64.
V. I.
Oseledets
, “
A multiplicative ergodic theorem: Characteristic Lyapunov exponents of dynamical systems
,”
Trudy Mosk. Mat. O-va.
19
,
179
210
(
1968
).
65.
P.
Fernandez
and
Q.
Wang
, “
Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization
,”
J. Comput. Phys.
350
,
453
469
(
2017
).
66.
D. A.
Nelson
and
G. B.
Jacobs
, “
High-order visualization of three-dimensional Lagrangian coherent structures with DG-FTLE
,”
Comput. Fluids
139
,
197
215
(
2016
).
67.
M.
Sudharsan
,
S. L.
Brunton
, and
J. J.
Riley
, “
Lagrangian coherent structures and inertial particle dynamics
,”
Phys. Rev. E
93
(
3
),
033108
(
2016
).
68.
L.
Kourentis
and
E.
Konstantinidis
, “
Uncovering large-scale coherent structures in natural and forced turbulent wakes by combining PIV, POD, and FTLE
,”
Exp. Fluids
52
(
3
),
749
763
(
2012
).
69.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
(
1
),
9
20
(
1980
).
70.
P. J.
Blonigan
, “
Least squares shadowing for sensitivity analysis of large chaotic systems and fluid flows
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2016
).
71.
D.
Huynh
and
A.
Patera
, “
Reduced basis approximation and a posteriori error estimation for stress intensity factors
,”
Int. J. Numer. Methods Eng.
72
(
10
),
1219
1259
(
2007
).
72.
K.
Carlberg
and
C.
Farhat
, “
A compact proper orthogonal decomposition basis for optimization-oriented reduced-order models
,” in
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
(
AIAA
,
2008
), p.
5964
.
73.
C. A.
Pereira
and
B. C.
Vermeire
, “
Spectral properties of high-order element types for implicit large eddy simulation
,”
J. Sci. Comput.
85
(
2
),
48
(
2020
).
74.
H. T.
Huynh
, “
A flux reconstruction approach to high-order schemes including discontinuous galerkin methods
,” in
18th AIAA Computational Fluid Dynamics Conference
(
AIAA
,
2007
), p.
4079
.
75.
V.
Hernandez
,
J. E.
Roman
, and
V.
Vidal
, “
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
,”
ACM Trans. Math. Software
31
(
3
),
351
362
(
2005
).
76.
L. D.
Dalcin
,
R. R.
Paz
,
P. A.
Kler
, and
A.
Cosimo
, “
Parallel distributed computing using Python
,”
Adv. Water Resources
34
(
9
),
1124
1139
(
2011
).
77.
S.
Balay
,
S.
Abhyankar
,
M. F.
Adams
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
L.
Dalcin
,
A.
Dener
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Karpeyev
,
D.
Kaushik
,
M. G.
Knepley
,
D. A.
May
,
L. C.
McInnes
,
R. T.
Mills
,
T.
Munson
,
K.
Rupp
,
P.
Sanan
,
B. F.
Smith
,
S.
Zampini
,
H.
Zhang
, and
H.
Zhang
, “
PETSc users manual
,”
Technical Report No. ANL-95/11—Revision 3.14
(
Argonne National Laboratory
,
2020
).
78.
L.
Dalcín
,
R.
Paz
, and
M.
Storti
, “
MPI for Python
,”
J. Parallel Distributed Comput.
65
(
9
),
1108
1115
(
2005
).
79.
O.
Inoue
and
N.
Hatakeyama
, “
Sound generation by a two-dimensional circular cylinder in a uniform flow
,”
J. Fluid Mech.
471
,
285
(
2002
).
80.
J.
Cagnone
,
B. C.
Vermeire
, and
S.
Nadarajah
, “
A p-adaptive LCP formulation for the compressible Navier–Stokes equations
,”
J. Comput. Phys.
233
,
324
338
(
2013
).
81.
S.
Yarusevych
,
P. E.
Sullivan
, and
J. G.
Kawall
, “
On vortex shedding from an airfoil in low-Reynolds-number flows
,”
J. Fluid Mech.
632
,
245
(
2009
).
82.
R. F.
Huang
and
C. L.
Lin
, “
Vortex shedding and shear-layer instability of wing at low-Reynolds numbers
,”
AIAA J.
33
(
8
),
1398
1403
(
1995
).
83.
B. C.
Vermeire
and
S. H.
Nasab
, “
Accelerated implicit-explicit Runge-Kutta schemes for locally stiff systems
,”
J. Comput. Phys.
429
,
110022
(
2021
).
84.
M. E.
Rosti
,
M.
Omidyeganeh
, and
A.
Pinelli
, “
Direct numerical simulation of the flow around an aerofoil in ramp-up motion
,”
Phys. Fluids
28
(
2
),
025106
(
2016
).
85.
See https://www.tensorflow.org/ for “
TensorFlow: Large-scale machine learning on heterogeneous systems
” (
2015
).
You do not currently have access to this content.