The tail cavity as induced by submerged gaseous jets on the bottom of axisymmetric vehicles is studied in a water tunnel over Froude numbers, which denote co-flow velocities, between 4.8 < Fr <16.0, and the jet stagnation to ambient pressure ratio in a convergent–divergent nozzle between 1.7 < p0/p < 14.5. The shadowgraph topology of the induced tail cavity falls into three consecutive categories on the regime map: intact cavity, partially broken cavity (PBC), and pulsating foamy cavity. Both the Fr and p0/p are essential drivers for the topology and length of the tail cavity within the current scope. The length of PBC holds a logarithmic relationship to p0/p. The fluctuation intensity of the cavitation number is under heavy influence from Fr and p0/p and is regarded as a direct and reliable measurement of jet/closure interaction intensity. Under high Fr, the Rayleigh–Taylor instability is dominant at the cavity surface, which leads to a significant amount of bubble shedding and adds to the total cavity gas leakage. From the perspective of the vehicle, the characteristics of its bottom pressure depend on the cavity regime. The characteristics of jet-induced tail cavity established in the presented study should be helpful for the design and control of submarine vehicles propelled by rockets and supersonic jets.

1.
X.
Zhang
,
S.
Li
,
B.
Yang
, and
N.
Wang
, “
Flow structures of over-expanded supersonic gaseous jets for deep-water propulsion
,”
Ocean Eng.
213
,
107611
(
2020
).
2.
F.
Petipas
,
J.
Massoni
, and
R.
Saurel
, “
Diffuse interface model for high speed cavitating underwater systems
,”
Int. J. Multiphase Flow
35
,
747
(
2009
).
3.
L.
Liu
,
O.
Keplinger
,
T.
Ziegenhein
,
N.
Shevchenko
,
S.
Eckert
,
H.
Yan
, and
D.
Lucas
, “
Euler–Euler modeling and x-ray measurement of oscillating bubble chain in liquid metals
,”
Int. J. Multiphase Flow
110
,
218
(
2019
).
4.
M.
Xiang
,
X.
Zhao
, and
H.
Zhou
, “
Transient dynamic analysis for the submerged gas jet in flowing water
,”
Eur. J. Mech., B: Fluids
85
,
351
(
2021
).
5.
X.
Zhang
,
S.
Li
,
D.
Yu
,
B.
Yang
, and
N.
Wang
, “
The evolution of interfaces for underwater supersonic gas jets
,”
Water
12
,
488
(
2020
).
6.
C.
Wang
,
H. H.
Shi
, and
J. F.
Wang
, “
Transient characteristics of compressible gas jet in liquid
,”
Ciesc J.
67
,
2291
(
2016
).
7.
V.
Arghode
and
A.
Gupta
, “
Effect of nozzle exit geometry on submerged jet characteristics in underwater propulsion
,” in
46th AIAA Aerospace Sciences Meeting and Exhibit
(
2012
).
8.
H. H.
Shi
,
Q.
Guo
,
C.
Wang
,
R. L.
Dong
,
L. T.
Zhang
,
H. X.
Jia
,
X. G.
Wang
, and
B. Y.
Wang
, “
Oscillation flow induced by underwater supersonic gas jets
,”
Shock Waves
20
,
347
(
2010
).
9.
T.
Yunlong
and
L.
Shipeng
, “
The mechanism for the quasi-back-attack phenomenon of gas jets submerged in water
,”
Int. J. Aeronaut. Space Sci.
20
,
165
(
2019
).
10.
K.
Harby
,
S.
Chiva
, and
J. L.
Muñoz-Cobo
, “
An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient
,”
Exp. Therm. Fluid Sci.
53
,
26
(
2014
).
11.
C.
Weiland
and
P. P.
Vlachos
, “
Round gas jets submerged in water
,”
Int. J. Multiphase Flow
48
,
46
(
2013
).
12.
H.
Miaosheng
,
Q.
Lizi
, and
L.
Yu
, “
Oscillation flow induced by underwater supersonic gas jets from a rectangular Laval nozzle
,”
Procedia Eng.
99
,
1531
(
2015
).
13.
J.-b.
Xiao
,
H.-j.
Yan
,
M.
Schubert
,
S.
Unger
,
L.
Liu
,
E.
Schleicher
, and
U.
Hampel
, “
Effect of nozzle geometry on pressure drop in submerged gas injection
,”
J. Cent. South Univ.
26
,
2068
(
2019
).
14.
Y.
Jiang
,
S.
Shao
, and
J.
Hong
, “
Experimental investigation of ventilated supercavitation with gas jet cavitator
,”
Phys. Fluids
30
,
012103
(
2018
).
15.
P.
Dong
,
B.
Lu
,
S.
Gong
, and
D.
Cheng
, “
Experimental study of submerged gas jets in liquid cross flow
,”
Exp. Therm. Fluid Sci.
112
,
109998
(
2020
).
16.
P.
Dong
,
K.
Wang
,
D.
Cheng
, and
B.
Lu
, “
Submerged gas jet in liquid cross flow: Modeling and flow structures analysis
,”
Ocean Eng.
242
,
110128
(
2021
).
17.
D.
Nagarathinam
,
K.
Kim
,
B.-K.
Ahn
,
C.
Park
,
G.-D.
Kim
, and
G.-T.
Yim
, “
Experimental investigation of bubbly flow by air injection on an inclined hydrofoil
,”
Phys. Fluids
33
,
043309
(
2021
).
18.
M. A.
Balzan
,
F.
Hernandez
,
C. F.
Lange
, and
B. A.
Fleck
, “
Parametric study of the frequency of bubble formation at a single orifice with liquid cross-flow
,”
J. Fluids Eng.
141
(
9
),
091102
(
2019
).
19.
N.
Mao
,
C.
Kang
,
K.
Ding
, and
Q.
Cao
, “
Gas–liquid two-phase flow patterns in the wake of a submerged nozzle under co-flow condition
,”
Int. J. Multiphase Flow
138
,
103604
(
2021
).
20.
H.
Xu
,
C.
Wang
,
H.-Z.
Lu
, and
W.-H.
Huang
, “
Experimental study on submerged supersonic gaseous jet induced tail cavity
,”
Acta Phys. Sin.
67
(
1
),
014703
(
2018
).
21.
E. V.
Paryshev
, “
Approximate mathematical models in high-speed hydrodynamics
,”
J. Eng. Math.
55
,
41
(
2006
).
22.
M. P.
Kinzel
,
M. H.
Krane
,
I. N.
Kirschner
, and
M. J.
Moeny
, “
A numerical assessment of the interaction of a supercavitating flow with a gas jet
,”
Ocean Eng.
136
,
304
313
(
2017
).
23.
M.
Kinzel
,
M.
Moeny
,
M.
Krane
, and
I.
Kirschner
, “
Jet-supercavity interaction: Insights from CFD
,”
J. Phys.: Conf. Ser.
656
,
012133
(
2015
).
24.
I. N.
Kirschner
,
M. J.
Moeny
,
M. H.
Krane
, and
M. P.
Kinzel
, “
Jet-supercavity interaction: Insights from physics analysis
,”
J. Phys.: Conf. Ser.
656
,
012156
(
2015
).
25.
M. J.
Moeny
,
M. H.
Krane
,
I. N.
Kirschner
, and
M. P.
Kinzel
, “
Jet-supercavity interaction: Insights from experiments
,”
J. Phys.: Conf. Ser.
656
,
012162
(
2015
).
26.
S. H.
Yi
,
Supersonic and Hypersonic Nozzle Design
(
National Defense Industry Press
,
Beijing
,
2013
).
27.
D. H.
Ouyang
,
W. R.
Yan
,
Q. T.
Zhang
, and
C. H.
Yang
, “
Movement and acoustic radiation of a rising bubble from combustion of pyrotechnic mixtures using experiment and image processing method
,”
Phys. Fluids
33
,
105114
(
2021
).
28.
D.
Laupsien
,
C.
Le Men
,
A.
Cockx
, and
A.
Liné
, “
Image processing for bubble morphology characteristics in diluted bubble swarms
,”
Phys. Fluids
31
,
053306
(
2019
).
29.
T.
Liu
,
B.
Huang
,
G.
Wang
,
M.
Zhang
, and
D.
Gao
, “
Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment
,”
Ocean Eng.
129
,
343
(
2017
).
30.
E.
Kawakami
and
R. E. A.
Arndt
, “
Investigation of the behavior of ventilated supercavities
,”
J. Fluids Eng.
133
(
9
),
091305
(
2011
).
31.
J.
Kostas
,
J.
Soria
, and
M.
Chong
, “
Particle image velocimetry measurements of a backward-facing step flow
,”
Exp. Fluids
33
,
838
(
2002
).
32.
G. V.
Logvinovich
,
Hydrodynamics of Free-Boundary Flows
(
Israel Program for Scientific Translations Ltd
.,
Jerusalem
,
1972
).
33.
J. M.
Michel
, “
Some features of water flows with ventilated cavities
,”
J. Fluids Eng.
106
,
319
(
1984
).
34.
Y. N.
Savchenko
and
G. Y.
Savchenko
, “
Gas flows in ventilated supercavities
,” in
Supercavitation
(
Springer
,
Berlin/Heidelberg
,
2012
), p.
115
.
35.
M.
Epstein
,
H. K.
Fauske
,
S.
Kubo
,
T.
Nakamura
, and
K.
Koyama
, “
Liquid entrainment by an expanding core disruptive accident bubble—A Kelvin/Helmholtz phenomenon
,”
Nucl. Eng. Des.
210
,
53
(
2001
).
36.
J. H.
Spurk
, “
On the gas loss from ventilated supercavities
,”
Acta Mech.
155
,
125
(
2002
).
37.
H.
Shi
,
B.
Wang
, and
Z.
Dai
, “
Research on the mechanics of underwater supersonic gas jets
,”
Sci. China Phys. Mech.
53
,
527
(
2010
).
38.
Y.
Jia
,
S.
Zhang
,
J.
You
, and
Y.
Bai
, “
Experimental research on the changing process of underwater ignition wake of solid rocket motor
,”
J. Solid Rocket Technol.
38
,
660
(
2015
).
39.
Y.
Wu
,
Y.
Liu
,
S.
Shao
, and
J.
Hong
, “
On the internal flow of a ventilated supercavity
,”
J. Fluid Mech.
862
,
1135
1165
(
2019
).
You do not currently have access to this content.