This work presents an analysis of the inner boundary of the secondary flow (i.e., corner vortex flow) in the entrance region of a rectangular slit channel for long-chain-branched polyethylene melt evaluated using particle tracking and stress-induced birefringence measurements. Further, the flow-induced birefringence technique was used to investigate the effects of temperature and shear rate on the size of the secondary entry flow. Obtained results and trends were compared with the laser-Doppler velocimetry data taken from the open literature for the same polymer melt and comparable flow conditions. Interestingly, the results of both methods were very similar. This suggests that the stress-induced birefringence measurements may be a useful tool for investigating secondary entry flows of polymer melts.

1.
A. I.
Leonov
and
A.
Prokunin
,
Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids
(
Springer Science & Business Media
,
2012
).
2.
D. G.
Baird
and
D. I.
Collias
,
Polymer Processing: Principles and Design
(
John Wiley & Sons
,
2014
).
3.
C. P.
Carroll
and
Y. L.
Joo
, “
Axisymmetric instabilities in electrospinning of highly conducting, viscoelastic polymer solutions
,”
Phys. Fluids
21
,
103101
(
2009
).
4.
M.
Zuliki
,
S.
Zhang
,
T.
Tomcovic
, and
S. G.
Hatzikiriakos
, “
Capillary flow of sodium and zinc ionomers
,”
Phys. Fluids
32
,
023106
(
2020
).
5.
T.
Bodnar
,
A.
Sequeira
, and
M.
Prosi
, “
On the shear-thinning and viscoelastic effects of blood flow under various flow rates
,”
Appl. Math. Comput.
217
,
5055
5067
(
2011
).
6.
A.
Elhanafy
,
A.
Guaily
, and
A.
Elsaid
, “
Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties
,”
Math. Comput. Simul.
160
,
55
71
(
2019
).
7.
N.
Ali
,
S.
Hussain
, and
K.
Ullah
, “
Theoretical analysis of two-layered electro-osmotic peristaltic flow of FENE-P fluid in an axisymmetric tube
,”
Phys. Fluids
32
,
023105
(
2020
).
8.
F. J.
Galindo-Rosales
,
L.
Campo-Deano
,
F. T.
Pinho
,
E.
Van Bokhorst
,
P. J.
Hamersma
,
M. S. N.
Oliveira
, and
M. A.
Alves
, “
Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media
,”
Microfluid. Nanofluid.
12
,
485
498
(
2012
).
9.
D. F.
James
and
D. R.
McLaren
, “
The laminar flow of dilute polymer solutions through porous media
,”
J. Fluid Mech.
70
,
733
752
(
1975
).
10.
X.
Li
,
B.
Sarsenbekuly
,
H.
Yang
,
Z.
Huang
,
H.
Jiang
,
X.
Kang
,
M.
Li
,
W.
Kang
, and
P.
Luo
, “
Rheological behaviour of a wormlike micelle and an amphiphilic polymer combination for enhanced oil recovery
,”
Phys. Fluids
32
,
073105
(
2020
).
11.
S. W.
Park
, “
Analytical modeling of viscoelastic dampers for structural and vibrational control
,”
Int. J. Solids Struct.
38
,
8065
8092
(
2001
).
12.
N.
Makris
,
G. F.
Dargush
, and
M. C.
Constantinou
, “
Dynamic analysis of viscoelastic-fluid dampers
,”
J. Eng. Mech.
121
,
1114
1121
(
1995
).
13.
A.
Syrakos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity
,”
Phys. Fluids
30
,
030708
(
2018
).
14.
J. P.
Tordella
, “
Capillary flow of molten polyethylene: A photographic study of melt fracture
,”
Trans. Soc. Rheol.
1
,
203
212
(
1957
).
15.
J.
Musil
and
M.
Zatloukal
, “
Historical review of secondary entry flows in polymer melt extrusion
,”
Polym. Rev.
59
,
338
390
(
2019
).
16.
D.
Hertel
and
H.
Münstedt
, “
Dependence of the secondary flow of a low-density polyethylene on processing parameters as investigated by laser-Doppler velocimetry
,”
J. Non-Newtonian Fluid Mech.
153
,
73
81
(
2008
).
17.
A.
Shahbani-Zahiri
,
H.
Hassanzadeh
,
M. M.
Shahmardan
, and
M.
Norouzi
, “
Investigation of pitchfork bifurcation phenomena effects on heat transfer of viscoelastic flow inside a symmetric sudden expansion
,”
Phys. Fluids
29
,
113101
(
2017
).
18.
J. E.
López-Aguilar
,
M. F.
Webster
,
H. R.
Tamaddon-Jahromi
,
O.
Manero
,
D. M.
Binding
, and
K.
Walters
, “
On the use of continuous spectrum and discrete-mode differential models to predict contraction-flow pressure drops for Boger fluids
,”
Phys. Fluids
29
,
121613
(
2017
).
19.
Y.
Wang
,
E.
Ferrer
,
A.
Martínez-Cava
,
Y.
Zheng
, and
E.
Valero
, “
Enhanced stability of flows through contraction channels: Combining shape optimization and linear stability analysis
,”
Phys. Fluids
31
,
074109
(
2019
).
20.
T.
Tomcovic
,
E.
Mitsoulis
, and
S. G.
Hatzikiriakos
, “
Contraction flow of ionomers and their corresponding copolymers: Ionic and hydrogen bonding effects
,”
Phys. Fluids
31
,
033102
(
2019
).
21.
R.
Hidema
,
T.
Oka
,
Y.
Komoda
, and
H.
Suzuki
, “
Effects of flexibility and entanglement of sodium hyaluronate in solutions on the entry flow in micro abrupt contraction-expansion channels
,”
Phys. Fluids
31
,
072005
(
2019
).
22.
C.
Sasmal
, “
Flow of wormlike micellar solutions through a long micropore with step expansion and contraction
,”
Phys. Fluids
32
,
013103
(
2020
).
23.
H.-C.
Tseng
, “
A revisitation of generalized Newtonian fluids
,”
J. Rheol.
64
,
493
504
(
2020
).
24.
A.
Farahanchi
,
D.
Azevedo
, and
J.
Czazasty
, “
Effects of viscoelastic properties of polymer melts on the entrance vortex flow
,” in
Annual Technical Conference–ANTEC, Conference Proceedings
(
SPE
,
2020
), Vol.
1
, pp.
94
98
.
25.
L. L.
Ferrás
,
A. M.
Afonso
,
M. A.
Alves
 et al, “
Newtonian and viscoelastic fluid flows through an abrupt 1:4 expansion with slip boundary conditions
,”
Phys. Fluids
32
,
043103
(
2020
).
26.
D.
Li
 et al, “
A depth-averaged model for Newtonian fluid flows in shallow microchannels
,”
Phys. Fluids
33
,
012002
(
2021
).
27.
S.
Wu
 et al, “
Polymer effects on viscoelastic fluid flows in a planar constriction microchannel
,”
J. Non-Newtonian Fluid Mech.
290
,
104508
(
2021
).
28.
M. K.
Raihan
 et al, “
Flow of non-Newtonian fluids in a single-cavity microchannel
,”
Micromachines
12
,
836
855
(
2021
).
29.
D. W.
Carlson
,
A. Q.
Shen
, and
S. J.
Haward
, “
Microtomographic particle image velocimetry measurements of viscoelastic instabilities in a three-dimensional microcontraction
,”
J. Fluid Mech.
923
,
R6
(
2021
).
30.
A.
Zargartalebi
,
M.
Zargartalebi
, and
M.
Benneker
, “
Analysis of vortices in viscoelastic fluid flow through confined geometries at low Reynolds numbers
,”
AIP Adv.
11
,
085213
(
2021
).
31.
E. J.
Nodoushan
,
Y. J.
Lee
,
G.-H.
Lee
, and
N.
Kim
, “
Quasi-static secondary flow regions formed by microfluidic contraction flows of wormlike micellar solutions
,”
Phys. Fluids
33
,
093112
(
2021
).
32.
S. A.
White
and
D. G.
Baird
, “
The importance of extensional flow properties on planar entry flow patterns of polymer melts
,”
J. Non-Newtonian Fluid Mech.
20
,
93
101
(
1986
).
33.
S. A.
White
and
D. G.
Baird
, “
Flow visualization and birefringence studies on planar entry flow behavior of polymer melts
,”
J. Non-Newtonian Fluid Mech.
29
,
245
267
(
1988
).
34.
B.
Tremblay
, “
Visualization of the flow of linear low density polyethylene/low density polyethylene blends through sudden contractions
,”
J. Non-Newtonian Fluid Mech.
43
,
1
29
(
1992
).
35.
B.
Tremblay
, “
Visualization of the flow of low density polyethylene/polystyrene blends through a planar step contraction
,”
J. Non-Newtonian Fluid Mech.
52
,
323
331
(
1994
).
36.
P. D.
Coates
,
M.
Matsuoka
,
M.
Kamala
, and
M.
Martyn
, “
Observation of 3D effects in flow visualization of polymer melts
,” in
57th Annual Technical Conference (ANTEC), New York
(
SPE
,
1999
), Vol.
1
, pp.
1167
1171
.
37.
P. D.
Coates
,
M.
Matsuoka
,
M.
Kamala
, and
M.
Martyn
, “
Observation and quantification of 3D effects in polymer melt entry flows
,” in
15th Annual Meeting of Polymer Processing Society, Hertogenbosch, The Netherlands
(
1999
).
38.
T.
Gough
,
R.
Spares
,
A. L.
Kelly
,
S. M.
Brook
, and
P. D.
Coates
, “
Three-dimensional characterization of full field stress and velocity fields for polyethylene melt through abrupt contraction
,”
Plast., Rubber Compos.
37
,
158
165
(
2008
).
39.
I. G.
Kazatchov
,
F.
Yip
, and
S. G.
Hatzikiriakos
, “
The effect of boron nitride on the rheology and processing of polyolefins
,”
Rheol. Acta
39
,
583
594
(
2000
).
40.
E.
Mitsoulis
,
I. B.
Kazatchov
, and
S. G.
Hatzikiriakos
, “
The effect of slip in the flow of a branched PP melt: Experiments and simulations
,”
Rheol. Acta
44
,
418
426
(
2005
).
41.
M.
Schmidt
,
E.
Wassner
, and
H.
Münstedt
, “
Setup and test of a laser Doppler velocimeter for investigations of flow behaviour of polymer melts
,”
Mech. Time-Depend. Mater.
3
,
371
393
(
1999
).
42.
E.
Wassner
,
M.
Schmidt
, and
H.
Münstedt
, “
Entry flow of a low-density-polyethylene melt into a die: An experimental study by laser-Doppler velocimetry
,”
J. Rheol.
43
,
1339
1353
(
1999
).
43.
H.
Münstedt
,
M.
Schwetz
,
M.
Heindl
, and
M.
Schmidt
, “
Influence of molecular structure on secondary flow of polyolefin melts as investigated by a laser-Doppler velocimetry
,”
Rheol. Acta
40
,
384
394
(
2001
).
44.
M.
Schwetz
,
H.
Münstedt
,
M.
Heindl
, and
A.
Merten
, “
Investigations on the temperature dependence of the die entrance flow of various long-chain branched polyethylenes using laser-Doppler velocimetry
,”
J. Rheol.
46
,
797
815
(
2002
).
45.
D.
Hertel
,
R.
Valette
, and
H.
Münstedt
, “
Three-dimensional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE) into a slit die
,”
J. Non-Newtonian Fluid Mech.
153
,
82
94
(
2008
).
46.
G.
Boukellal
,
D.
Hertel
,
R.
Valette
,
H.
Münstedt
, and
J.-F.
Agassant
, “
Investigation of LDPE converging flows using fieldwise measurements techniques
,”
Int. J. Mater. Form.
1
,
687
690
(
2008
).
47.
J.
Musil
,
M.
Zatloukal
,
T.
Gough
, and
M.
Martyn
, “
Investigation of vortex development during polymer melt flows by flow birefringence
,”
AIP Conf. Proc.
1375
,
14
25
(
2011
).
48.
M.
Zatloukal
,
K.
Chaloupkova
,
D.
Hertel
, and
H.
Münstedt
, “
Effect of die geometry and extensional rheological properties on vortex development in rectangular dies
,” in
Annual Technical Conference—ANTEC, Conference Proceedings
(
SPE
,
2007
), Vol.
4
, pp.
1938
1942
.
49.
E.
Mitsoulis
,
M.
Schwetz
, and
H.
Münstedt
, “
Entry flow of LDPE melts in a planar contraction
,”
J. Non-Newtonian Fluid Mech.
111
,
41
61
(
2003
).
50.
M. T.
Martyn
,
R.
Spares
,
P. D.
Coates
, and
M.
Zatloukal
, “
Imaging and analysis of wave type interfacial instability in the coextrusion of low-density polyethylene melts
,”
J. Non-Newtonian Fluid Mech.
156
,
150
164
(
2009
).
51.
C.
Gabriel
,
J.
Kaschta
, and
H.
Münstedt
, “
Influence of molecular structure on rheological properties of polyethylenes I. Creep recovery measurements in shear
,”
Rheol. Acta
37
,
7
20
(
1998
).
52.
H.
Janeschitz-Kriegel
,
Polymer Melt Rheology and Flow Birefringence
(
Springer-Verlag
,
New York
,
1983
).
53.
G. G.
Fuller
, “
Optical rheometry
,”
Ann. Rev. Fluid Mech.
22
,
387
417
(
1990
).
54.
G. G.
Fuller
,
Optical Rheometry of Complex Fluids
(
Oxford University Press
,
New York
,
1995
).
55.
M. T.
Martyn
,
C.
Nakason
, and
P. D.
Coates
, “
Stress measurements for contraction flows of viscoelastic polymer melts
,”
J. Non-Newtonian Fluid Mech.
91
,
123
142
(
2000
).
56.
L.
Robert
,
B.
Vergnes
, and
Z.
Demay
, “
Flow birefringence study of the stick-slip instability during extrusion of high-density polyethylenes
,”
J. Non-Newtonian Fluid Mech.
112
,
27
42
(
2003
).
57.
J. L.
Den Otter
,
J. L. S.
Wales
, and
J.
Schijf
, “
The velocity profiles of molten polymers during laminar flow
,”
Rheol. Acta
6
,
205
209
(
1967
).
58.
N.
Clemeur
,
R. P. G.
Rutgers
, and
B.
Debbaut
, “
Numerical evaluation of three dimensional effects in planar flow birefringence
,”
J. Non-Newtonian Fluid Mech.
123
,
105
120
(
2004
).
59.
S. A.
White
and
D. G.
Baird
, “
Numerical simulation studies of the planar entry flow of polymer melts
,”
J. Non-Newtonian Fluid Mech.
30
,
47
71
(
1988
).
60.
M.
Zatloukal
, “
Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt
,”
Polymer
104
,
258
267
(
2016
).

Supplementary Material

You do not currently have access to this content.