Advanced materials and new lightweighting technologies are essential for boosting the fuel economy of modern automobiles while maintaining performance and safety. A novel approach called subcritical gas-laden pellet injection molding foaming technology (SIFT) was performed to produce foamed polyamide/glass fiber (PA/GF) composite. Gas-laden pellets loaded with nitrogen (N2) were produced by introducing sub-critical N2 into PA/GF composite during compounding using a twin-screw extruder equipped with a simple gas injection unit. Compared to the commercial microcellular injection molding (MIM) technologies, gas-laden pellets enable the production of foamed parts with a standard injection molding machine, which is more cost-effective and easier to implement. To the best of our knowledge, this is the first attempt that the SIFT technology is being used for the PA/GF composites for making foamed parts. The tensile strength, fiber orientation, cell morphology, and densities of foamed PA/GF parts were investigated, and the shelf life of N2-laden PA/GF pellets was examined. Results showed that the N2-laden pellets still possessed good foaming ability after one week of storage under ambient atmospheric conditions. One week is a noticeable improvement compared to those N2-laden neat polymer pellets without glass fibers. With this approach, the weight reduction of foamed PA/GF parts was able to reach 12.0 wt. %. Additionally, a nondestructive analysis of the fiber orientation using micro-computed tomography suggested that the MIM and SIFT samples exhibited a less degree of fiber orientation along the flow direction when compared to the solid samples and that the tensile strength of both technologies was very close at a similar weight reduction. Cell size increased and cell density decreased as the shelf life increased. These findings showed that this processing method could act as an alternative to current commercial foam injection molding technology for producing lightweight parts with greater design freedom.

1.
M. J.
Yuan
,
L. S.
Turng
,
S. Q.
Gong
,
D.
Caulfield
,
C.
Hunt
, and
R.
Spindler
, “
Study of injection molded microcellular polyamide-6 nanocomposites
,”
Polym. Eng. Sci.
44
(
4
),
673
686
(
2004
).
2.
J.
Karger-Kocsis
and
K.
Friedrich
, “
Fracture behavior of injection-molded short and long glass fiber-polyamide 6.6 composites
,”
Compos. Sci. Technol.
32
(
4
),
293
325
(
1988
).
3.
M. K.
Akkapeddi
, “
Glass fiber reinforced polyamide-6 nanocomposites
,”
Polym. Compos.
21
(
4
),
576
585
(
2000
).
4.
Y. X.
Zhou
and
P. K.
Mallick
, “
A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6, 6
,”
Mater. Sci. Eng., A
393
(
1–2
),
303
309
(
2005
).
5.
D. L.
Greene
and
K. G.
Duleep
, “
Costs and benefits of automative fuel economy improvement: A partial analysis
,”
Transp. Res., Part A
27
(
3
),
217
235
(
1993
).
6.
G. J.
Wu
,
P. C.
Xie
,
H. G.
Yang
,
K. F.
Dang
,
Y. X.
Xu
,
M.
Sain
,
L. S.
Turng
, and
W. M.
Yang
, “
A review of thermoplastic polymer foams for functional applications
,”
J. Mater. Sci.
56
,
11579–11604
(
2021
).
7.
S. T.
Lee
and
C. B.
Park
,
Foam Extrusion: Principles and Practice
(
CRC Press
,
2014
).
8.
D. M.
Laura
,
H.
Keskkula
,
J. W.
Barlow
, and
D. R.
Paul
, “
Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6
,”
Polymer
43
(
17
),
4673
4687
(
2002
).
9.
A.
Bechara
,
S.
Goris
,
A.
Yanev
,
D.
Brands
, and
T.
Osswald
, “
Novel modeling approach for fiber breakage during molding of long fiber-reinforced thermoplastics
,”
Phys. Fluids
33
(
7
),
073318
(
2021
).
10.
G.
Zhang
and
M. R.
Thompson
, “
Reduced fiber breakage in a glass-fiber reinforced thermoplastic through foaming
,”
Compos. Sci. Technol.
65
(
14
),
2240
2249
(
2005
).
11.
V.
Shaayegan
,
A.
Ameli
,
S.
Wang
, and
C. B.
Park
, “
Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites
,”
Composites, Part A
88
,
67
74
(
2016
).
12.
P. R.
Hornsby
,
I. R.
Head
, and
D. M.
Russell
, “
The effects of molding geometry on the structure and mechanical properties of fiber-reinforced polypropylene structural foam moldings
,”
J. Mater. Sci.
21
(
9
),
3279
3286
(
1986
).
13.
P. R.
Hornsby
and
D. A. M.
Russell
, “
Distortion of short-fiber reinforced thermoplastics structural foam injection moldings
,”
J. Mater. Sci.
21
(
9
),
3274
3278
(
1986
).
14.
A. K.
Nema
,
A. V.
Deshmukh
,
K.
Palanivelu
,
S. K.
Sharma
, and
T.
Malik
, “
Effect of exo-and endothermic blowing and wetting agents on morphology, density and hardness of thermoplastic polyurethanes foams
,”
J. Cell Plast.
44
,
277
(
2008
).
15.
Z. X.
Xin
,
Z. X.
Zhang
,
K.
Pal
,
J. U.
Byeon
,
S. H.
Lee
, and
J. K.
Kim
, “
Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend
,”
Mater. Des.
31
(
1
),
589
593
(
2010
).
16.
B. S.
Zhang
,
X. F.
Lv
,
Z. X.
Zhang
,
Y.
Liu
,
J. K.
Kim
, and
Z. X.
Xin
, “
Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams
,”
Mater. Des.
31
(
6
),
3106
3110
(
2010
).
17.
E.
Bociaga
and
P.
Palutkiewicz
, “
The influence of injection molding parameters and blowing agent addition on selected properties, surface state, and structure of HDPE parts
,”
Polym. Eng. Sci.
53
(
4
),
780
791
(
2013
).
18.
Y. G.
Zhou
,
B.
Su
, and
L. S.
Turng
, “
Fabrication of super-ductile PP/LDPE blended parts with a chemical blowing agent
,”
J. Appl. Polym. Sci.
133
(
42
),
44101
44116
(
2016
).
19.
S. S.
Hwang
,
S. P.
Liu
,
P. P.
Hsu
,
J. M.
Yeh
,
J. P.
Yang
,
K. C.
Chang
, and
S. N.
Chu
, “
Effect of organoclay and preparation methods on the mechanical/thermal properties of microcellular injection molded polyamide 6-clay nanocomposites
,”
Int. Commun. Heat Mass Transfer
38
(
9
),
1219
1225
(
2011
).
20.
R.
Pantani
,
V.
Volpe
, and
G.
Titomanlio
, “
Foam injection molding of poly (lactic acid) with environmentally friendly physical blowing agents
,”
J. Mater. Proc. Technol.
214
(
12
),
3098
3107
(
2014
).
21.
J. J.
Hou
,
G. Q.
Zhao
,
G. L.
Wang
,
G. W.
Dong
, and
J. J.
Xu
, “
A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance
,”
Mater. Des.
127
,
115
125
(
2017
).
22.
J. W.
Hendry
,
Method of injection molding a foamable thermoplastic material, U.S. Patent 3,962,387
(
1976
).
23.
V.
Kumar
,
K.
Nadella
,
G.
Branch
, and
B.
Flinn
, “
Extrusion of microcellular foams using pre-saturated pellets and solid-state nucleation
,”
Cell Polym.
23
(
369
),
369
385
(
2004
).
24.
J.
Jiang
,
Z. H.
Li
,
H. G.
Yang
,
X. F.
Wang
,
Q.
Li
, and
L. S.
Turng
, “
Microcellular injection molding of polymers: A review of process know-how, emerging technologies, and future directions
,”
Curr. Opin. Chem. Eng.
33
,
100694
(
2021
).
25.
J. J.
Lee
,
L. S.
Turng
,
E.
Dougherty
, and
P.
Gorton
, “
Novel foam injection molding technology using carbon dioxide-laden pellets
,”
Polym. Eng. Sci.
51
(
11
),
2295
2303
(
2011
).
26.
X. F.
Sun
and
L. S.
Turng
, “
Novel injection molding foaming approaches using gas-laden pellets with N2, CO2, and N2+ CO2 as the blowing agents
,”
Polym. Eng. Sci.
54
(
4
),
899
913
(
2014
).
27.
X. F.
Sun
,
H.
Kharbas
, and
L. S.
Turng
, “
Fabrication of highly expanded thermoplastic polyurethane foams using microcellular injection molding and gas-laden pellets
,”
Polym. Eng. Sci.
55
(
11
),
2643
2652
(
2015
).
28.
Y. J.
Chen
,
A.
Huang
,
T.
Ellingham
,
C.
Chung
, and
L. S.
Turng
, “
Mechanical properties and thermal characteristics of poly (lactic acid) and paraffin wax blends prepared by conventional melt compounding and sub-critical gas-assisted processing (SGAP)
,”
Eur. Polym. J.
98
,
262
272
(
2018
).
29.
J. J.
Lee
,
L. S.
Turng
,
E.
Dougherty
, and
P.
Gorton
, “
A novel method for improving the surface quality of microcellular injection molded parts
,”
Polymer
52
(
n6
),
1436
1446
(
2011
).
30.
G. L.
Wang
,
J. C.
Zhao
,
G. Z.
Wang
,
H. B.
Zhao
,
J.
Lin
,
G. Q.
Zhao
, and
C. B.
Park
, “
Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding
,”
Chem. Eng. J
390
,
124520
(
2020
).
31.
J.
Xie
,
C. Q.
Zhang
,
F.
Gu
,
Y. M.
Wang
,
J. Z.
Fu
, and
P.
Zhao
, “
An accurate and versatile density measurement device: Magnetic levitation
,”
Sens. Actuators, B
295
,
204
214
(
2019
).
32.
T.
Mulholland
,
S.
Goris
,
J.
Boxleitner
,
T. A.
Osswald
, and
N.
Rudolph
, “
Process-induced fiber orientation in fused filament fabrication
,”
J. Compos. Sci.
2
(
3
),
45
(
2018
).
33.
M.
Krause
,
J. M.
Hausherr
,
B.
Burgeth
,
C.
Herrmann
, and
W.
Krenkel
, “
Determination of the fiber orientation in composites using the structure tensor and local x-ray transform
,”
J. Mater. Sci.
45
,
888
896
(
2010
).
34.
S. G.
Advani
and
C. L.
Tucker
 III
, “
The use of tensors to describe and predict fiber orientation in short fiber composites
,”
J. Rheol.
31
(
8
),
751
784
(
1987
).
35.
Y. Y.
Song
,
U.
Gandhi
,
C.
Pérez
,
T.
Osswald
,
S.
Vallury
, and
A.
Yang
, “
Method to account for the fiber orientation of the initial charge on the fiber orientation of finished part in compression molding simulation
,”
Composites, Part A
100
,
244
254
(
2017
).
36.
S. A.
Simon
,
J.
Hain
, and
T.
Osswald
, “
Effect of gas pressure on the microstructure of parts foamed with the novel microcellular injection molding technology Ku‐Fizz
,”
SPE Polymers
2
,
311
(
2021
).
37.
D.
Sykutera
,
P.
Czyżewski
, and
P.
Szewczykowski
, “
The microcellular structure of injection molded thick-walled parts as observed by in-line monitoring
,”
Materials
13
(
23
),
5464
(
2020
).
38.
T.
Ellingham
,
L.
Duddleston
, and
L. S.
Turng
, “
Sub-critical gas-assisted processing using CO2 foaming to enhance the exfoliation of graphene in polypropylene+ graphene nanocomposites
,”
Polymer
117
,
132
(
2017
).
39.
B.
Xu
,
Y.
Liu
,
L.
He
,
L. S.
Turng
, and
C.
Liu
, “
Effect of centerline distance on mixing of a non-Newtonian fluid in a cavity with asymmetric rotors
,”
Phys. Fluids
31
(
2
),
021205
(
2019
).
40.
Y. G.
Zhou
,
B.
Su
, and
L. S.
Turng
, “
Mechanical properties, fiber orientation, and length distribution of glass fiber‐reinforced polypropylene parts: Influence of water‐foaming technology
,”
Polym. Compos.
39
(
12
),
4386
4399
(
2018
).
41.
G. S.
He
,
J.
Li
,
F. S.
Zhang
,
C.
Wang
, and
S. Y.
Guo
, “
Effect of multistage tensile extrusion induced fiber orientation on fracture characteristics of high density polyethylene/short glass fiber composites
,”
Compos. Sci. Technol.
100
,
1
9
(
2014
).
42.
S. W.
Yu
,
J. Y.
Hwang
, and
S. H.
Hong
, “
3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6, 6 composites
,”
Composites, Part B
187
,
107839
(
2020
).
43.
R.
Mollaabbasi
,
E.
Behzadfar
, and
S. M.
Taghavi
, “
A simplified semi-analytical model for the filling and cooling process in plastic molding
,”
Phys. Fluids
31
(
6
),
063105
(
2019
).
44.
F. H.
Liu
,
C.
Guo
,
X.
Wu
,
X. Y.
Qian
,
H.
Liu
, and
J.
Zhang
, “
Morphological comparison of isotactic polypropylene parts prepared by micro‐injection molding and conventional injection molding
,”
Polym. Adv. Technol.
23
(
3
),
686
694
(
2012
).
You do not currently have access to this content.