Carotid is one of the focal regions prone to atherosclerosis. Previous studies have shown that hemodynamics plays an important role in the initiation and formation of atherosclerosis plaques. In this work, we numerically investigate the flow patterns in two carotids with different flares and proximal curvatures under inflows from three age groups with/without exercise. The simulation results show that the effects of exercising on the carotid flow and wall shear stress are different at different time instants and for different age groups. As for the oscillatory shear index, exercise does not have significant effects. The effects of inflow waveforms on the reversed flow volume are also examined. For the carotid C1 with low flare and high proximal curvature, it is found that exercising increases and decreases the reversed flow volume for young and senior people, respectively. For middle-aged people, on the other hand, the reversed flow volume is increased and decreased in the middle of the sinus and near the bifurcation, respectively, for the carotid C1. For the carotid C2 with high flare and low curvature, on the other hand, it is found that exercising increases the reversed flow volume for all age groups. This work suggests that the effects of exercise on atherosclerosis should be evaluated by fully considering patient-specific geometries and ages.

1.
F.
Sotiropoulos
,
T. B.
Le
, and
A.
Gilmanov
, “
Fluid mechanics of heart valves and their replacements
,”
Annu. Rev. Fluid Mech.
48
,
259
283
(
2016
).
2.
W.
Choi
,
J. H.
Park
,
H.
Byeon
, and
S. J.
Lee
, “
Flow characteristics around a deformable stenosis under pulsatile flow condition
,”
Phys. Fluids
30
,
011902
(
2018
).
3.
C.
Cox
,
M. R.
Najjari
, and
M. W.
Plesniak
, “
Three-dimensional vortical structures and wall shear stress in a curved artery model
,”
Phys. Fluids
31
,
121903
(
2019
).
4.
T. B.
Le
and
F.
Sotiropoulos
, “
Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle
,”
J. Comput. Phys.
244
,
41
62
(
2013
).
5.
D. N.
Ku
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
,
399
434
(
1997
).
6.
J. M.
Tarbell
,
Z.-D.
Shi
,
J.
Dunn
, and
H.
Jo
, “
Fluid mechanics, arterial disease, and gene expression
,”
Annu. Rev. Fluid Mech.
46
,
591
614
(
2014
).
7.
D. L.
Fry
, “
Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog
,”
Circ. Res.
24
,
93
108
(
1969
).
8.
A. R.
Bond
,
S.
Iftikhar
,
A. A.
Bharath
, and
P. D.
Weinberg
, “
Morphological evidence for a change in the pattern of aortic wall shear stress with age
,”
Arterioscler., Thromb., Vasc. Biol.
31
,
543
550
(
2011
).
9.
M.
Pikoula
, “
A molecular dynamics study of the vascular endothelial glycocalyx layer
,” Ph.D. thesis (
University of Oxford
,
2016
).
10.
J.
Tarbell
and
L.
Cancel
, “
The glycocalyx and its significance in human medicine
,”
J. Intern. Med.
280
,
97
113
(
2016
).
11.
A. M. W.
Bartosch
,
R.
Mathews
, and
J. M.
Tarbell
, “
Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling
,”
Biophys. J.
113
,
101
108
(
2017
).
12.
M. J.
Cheng
,
R.
Mitra
,
C. C.
Okorafor
,
A. A.
Nersesyan
,
I. C.
Harding
,
N. N.
Bal
,
R.
Kumar
,
H.
Jo
,
S.
Sridhar
, and
E. E.
Ebong
, “
Targeted intravenous nanoparticle delivery: Role of flow and endothelial glycocalyx integrity
,”
Ann. Biomed. Eng.
48
,
1941
(
2020
).
13.
J.
Albarrán-Juárez
,
A.
Iring
,
S.
Wang
,
S.
Joseph
,
M.
Grimm
,
B.
Strilic
,
N.
Wettschureck
,
T. F.
Althoff
, and
S.
Offermanns
, “
Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation
,”
J. Exp. Med.
215
,
2655
2672
(
2018
).
14.
S.
Kumar
,
I.-H.
Jang
,
C. W.
Kim
,
D.-W.
Kang
,
W. J.
Lee
, and
H.
Jo
, “
Functional screening of mammalian mechanosensitive genes using Drosophila Rnai library–Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene
,”
Sci. Rep.
6
,
36461
(
2016
).
15.
X.
Kong
,
X.
Qu
,
B.
Li
,
Z.
Wang
,
Y.
Chao
,
X.
Jiang
,
W.
Wu
, and
S.-L.
Chen
, “
Modulation of low shear stress-induced eNOS multi-site phosphorylation and nitric oxide production via protein kinase and ERK1/2 signaling
,”
Mol. Med. Rep.
15
,
908
914
(
2017
).
16.
J.
Dunn
,
H.
Qiu
,
S.
Kim
,
D.
Jjingo
,
R.
Hoffman
,
C. W.
Kim
,
I.
Jang
,
D. J.
Son
,
D.
Kim
,
C.
Pan
 et al., “
Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis
,”
J. Clin. Invest.
124
,
3187
3199
(
2014
).
17.
J.
Dunn
,
S.
Thabet
, and
H.
Jo
, “
Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis
,”
Arterioscler., Thromb., Vasc. Biol.
35
,
1562
1569
(
2015
).
18.
J.
Dunn
,
R.
Simmons
,
S.
Thabet
, and
H.
Jo
, “
The role of epigenetics in the endothelial cell shear stress response and atherosclerosis
,”
Int. J. Biochem. Cell Biol.
67
,
167
176
(
2015
).
19.
S.
Kumar
,
D.-W.
Kang
,
A.
Rezvan
, and
H.
Jo
, “
Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation
,”
Lab. Invest.
97
,
935
945
(
2017
).
20.
S.
Kumar
,
C. W.
Kim
,
R. D.
Simmons
, and
H.
Jo
, “
Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: Mechanosensitive athero-mirs
,”
Arterioscler., Thromb., Vasc. Biol.
34
,
2206
2216
(
2014
).
21.
C.
Givens
and
E.
Tzima
, “
Endothelial mechanosignaling: Does one sensor fit all?
,”
Antioxid. Redox Signaling
25
,
373
388
(
2016
).
22.
J.
Tarbell
,
M.
Mahmoud
,
A.
Corti
,
L.
Cardoso
, and
C.
Caro
, “
The role of oxygen transport in atherosclerosis and vascular disease
,”
J. R. Soc. Interface
17
,
20190732
(
2020
).
23.
C.
Karthika
,
S.
Ahalya
,
N.
Radhakrishnan
,
C.
Kartha
, and
S.
Sumi
, “
Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases
,”
Mol. Cell. Biochem.
476
,
125
143
(
2021
).
24.
Y.-M.
Go
,
C. W.
Kim
,
D. I.
Walker
,
D. W.
Kang
,
S.
Kumar
,
M.
Orr
,
K.
Uppal
,
A. A.
Quyyumi
,
H.
Jo
, and
D. P.
Jones
, “
Disturbed flow induces systemic changes in metabolites in mouse plasma: A metabolomics study using ApoE-/- mice with partial carotid ligation
,”
Am. J. Physiol.-Regul., Integr. Comp. Physiol.
308
,
R62
R72
(
2015
).
25.
S.
Kim
,
J.-H.
Han
,
D.-H.
Nam
,
G.-Y.
Kim
,
J. H.
Lim
,
J.-R.
Kim
, and
C.-H.
Woo
, “
PAR-1 is a novel mechano-sensor transducing laminar flow-mediated endothelial signaling
,”
Sci. Rep.
8
,
15172
(
2018
).
26.
Q.
Yang
,
J.
Xu
,
Q.
Ma
,
Z.
Liu
,
V.
Sudhahar
,
Y.
Cao
,
L.
Wang
,
X.
Zeng
,
Y.
Zhou
,
M.
Zhang
 et al., “
PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis
,”
Nat. Commun.
9
,
4667
(
2018
).
27.
D.
Williams
,
M.
Mahmoud
,
R.
Liu
,
A.
Andueza
,
S.
Kumar
,
D.-W.
Kang
,
J.
Zhang
,
I.
Tamargo
,
N.
Villa-Roel
,
K.-I.
Baek
 et al., “
Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis
,”
BioRxiv
(
2021
).
28.
N.
Freidoonimehr
,
R.
Chin
,
A.
Zander
, and
M.
Arjomandi
, “
Effect of shape of the stenosis on the hemodynamics of a stenosed coronary artery
,”
Phys. Fluids
33
,
081914
(
2021
).
29.
M. S.
Nagargoje
,
D. K.
Mishra
, and
R.
Gupta
, “
Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels
,”
Phys. Fluids
33
,
071904
(
2021
).
30.
N.
Freidoonimehr
,
R.
Chin
,
A.
Zander
, and
M.
Arjomandi
, “
An experimental model for pressure drop evaluation in a stenosed coronary artery
,”
Phys. Fluids
32
,
021901
(
2020
).
31.
K.
Spanos
,
G.
Petrocheilou
,
C.
Karathanos
,
N.
Labropoulos
,
D.
Mikhailidis
, and
A.
Giannoukas
, “
Carotid bifurcation geometry and atherosclerosis
,”
Angiology
68
,
757
764
(
2017
).
32.
X.
Huang
,
X.
Yin
,
Y.
Xu
,
X.
Jia
,
J.
Li
,
P.
Niu
,
W.
Shen
,
G. S.
Kassab
,
W.
Tan
, and
Y.
Huo
, “
Morphometric and hemodynamic analysis of atherosclerotic progression in human carotid artery bifurcations
,”
Am. J. Physiol.-Heart Circ. Physiol.
310
,
H639
H647
(
2016
).
33.
A. V.
Kamenskiy
,
I. I.
Pipinos
,
J. S.
Carson
,
J. N.
MacTaggart
, and
B. T.
Baxter
, “
Age and disease-related geometric and structural remodeling of the carotid artery
,”
J. Vasc. Surg.
62
,
1521
1528
(
2015
).
34.
C.
Chiastra
,
D.
Gallo
,
P.
Tasso
,
F.
Iannaccone
,
F.
Migliavacca
,
J. J.
Wentzel
, and
U.
Morbiducci
, “
Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk
,”
J. Biomech.
58
,
79
88
(
2017
).
35.
M.
Nagargoje
and
R.
Gupta
, “
Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation
,”
Comput. Methods Programs Biomed.
192
,
105440
(
2020
).
36.
K.
Spanos
,
G.
Petrocheilou
,
L.
Livieratos
,
N.
Labropoulos
,
D. P.
Mikhailidis
, and
A. D.
Giannoukas
, “
Carotid bifurcation geometry as assessed by ultrasound is associated with early carotid atherosclerosis
,”
Ann. Vasc. Surg.
51
,
207
216
(
2018
).
37.
X.
Yao
,
Z.
Dai
,
X.
Zhang
,
J.
Gao
,
G.
Xu
,
Y.
Cai
, and
Z.
Li
, “
Carotid geometry as a predictor of in-stent neointimal hyperplasia
A computational fluid dynamics study
,”
Circ. J.
83
,
1472
(
2019
).
38.
H.
Watase
,
J.
Sun
,
D. S.
Hippe
,
N.
Balu
,
F.
Li
,
X.
Zhao
,
V.
Mani
,
Z. A.
Fayad
,
V.
Fuster
,
T. S.
Hatsukami
 et al., “
Carotid artery remodeling is segment specific: An in vivo study by vessel wall magnetic resonance imaging
,”
Arterioscler., Thromb., Vasc. Biol.
38
,
927
934
(
2018
).
39.
P.
Jiang
,
Z.
Chen
,
D. S.
Hippe
,
H.
Watase
,
B.
Sun
,
R.
Lin
,
Z.
Yang
,
Y.
Xue
,
X.
Zhao
, and
C.
Yuan
, “
Association between carotid bifurcation geometry and atherosclerotic plaque vulnerability: A Chinese atherosclerosis risk evaluation study
,”
Arterioscler., Thromb., Vasc. Biol.
40
,
1383
1391
(
2020
).
40.
S.
Gregg
,
T. Y.
Li
,
M.-F.
Hétu
,
S. C.
Pang
,
P.
Ewart
, and
A. M.
Johri
, “
Relationship between carotid artery atherosclerosis and bulb geometry
,”
Int. J. Cardiovasc. Imaging
34
,
1081
1090
(
2018
).
41.
C.
Strecker
,
A. J.
Krafft
,
L.
Kaufhold
,
M.
Hüllebrandt
,
S.
Weber
,
U.
Ludwig
,
M.
Wolkewitz
,
A.
Hennemuth
,
J.
Hennig
, and
A.
Harloff
, “
Carotid geometry is an independent predictor of wall thickness—A 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk
,”
J. Cardiovasc. Magn. Reson.
22
,
67
(
2020
).
42.
P. B.
Bijari
,
B. A.
Wasserman
, and
D. A.
Steinman
, “
Carotid bifurcation geometry is an independent predictor of early wall thickening at the carotid bulb
,”
Stroke
45
,
473
478
(
2014
).
43.
Y.
Chen
,
X.
Yang
,
A. J.
Iskander
, and
P.
Wang
, “
On the flow characteristics in different carotid arteries
,”
Phys. Fluids
32
,
101902
(
2020
).
44.
A.
Azhim
,
M.
Katai
,
M.
Akutagawa
,
Y.
Hirao
,
K.
Yoshizaki
,
S.
Obara
,
M.
Nomura
,
H.
Tanaka
,
H.
Yamaguchi
, and
Y.
Kinouchi
, “
Blood flow velocities in common carotid artery changes with age and exercise study by using of telemetry method
,” in
International Conference on Biomedical and Pharmaceutical Engineering
(
IEEE
,
2006
), pp.
523
530
.
45.
R.
Rauramaa
,
P.
Halonen
,
S. B.
Väisänen
,
T. A.
Lakka
,
A.
Schmidt-Trucksäss
,
A.
Berg
,
I. M.
Penttilä
,
T.
Rankinen
, and
C.
Bouchard
, “
Effects of aerobic physical exercise on inflammation and atherosclerosis in men: The DNASCO study: A six-year randomized, controlled trial
,”
Ann. Intern. Med.
140
,
1007
1014
(
2004
).
46.
N.
Kadoglou
,
F.
Iliadis
, and
C.
Liapis
, “
Exercise and carotid atherosclerosis
,”
Eur. J. Vasc. Endovasc. Surg.
35
,
264
272
(
2008
).
47.
Q.
Huang
,
J.
Sun
, and
C.
Xu
, “
Effects of waveform shape of pulsatile blood flow on hemodynamics in an artery bifurcation model
,”
Proc. Inst. Mech. Eng., Part C
235
,
428
440
(
2021
).
48.
C.
Rindt
 et al., “
Unsteady flow in a rigid 3D model of the carotid artery bifurcation
,”
J. Biomech. Eng.
118
,
90
96
(
1996
).
49.
M. W.
Plesniak
and
K. V.
Bulusu
, “
Morphology of secondary flows in a curved pipe with pulsatile inflow
,”
J. Fluids Eng.
138
,
101203
(
2016
).
50.
M. R.
Najjari
and
M. W.
Plesniak
, “
Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions
,”
Exp. Fluids
57
,
100
(
2016
).
51.
M. R.
Najjari
and
M. W.
Plesniak
, “
Secondary flow vortical structures in a 180° elastic curved vessel with torsion under steady and pulsatile inflow conditions
,”
Phys. Rev. Fluids
3
,
013101
(
2018
).
52.
F.
Ahmed
,
I.
Eames
,
E.
Moeendarbary
, and
A.
Azarbadegan
, “
High-Strouhal-number pulsatile flow in a curved pipe
,”
J. Fluid Mech.
923
,
A15
(
2021
).
53.
N. A.
Buchmann
and
M. C.
Jermy
, “
Blood flow measurements in idealised and patient specific models of the human carotid artery
,” in
Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
(
Citeseer
,
2008
), pp.
7
10
.
54.
Y. A.
Gataulin
,
D. K.
Zaitsev
,
E. M.
Smirnov
, and
A. D.
Yukhnev
, “
Numerical study of spatial-temporal evolution of the secondary flow in the models of a common carotid artery
,”
St. Petersburg Polytech. Univ. J.
3
,
1
6
(
2017
).
55.
M.
Sakthivel
and
K.
Anupindi
, “
An off-lattice Boltzmann method for blood flow simulation through a model irregular arterial stenosis: The effects of amplitude and frequency of the irregularity
,”
Phys. Fluids
33
,
031912
(
2021
).
56.
V.
Carvalho
,
N.
Rodrigues
,
R.
Ribeiro
,
P. F.
Costa
,
J. C.
Teixeira
,
R. A.
Lima
, and
S. F.
Teixeira
, “
Hemodynamic study in 3D printed stenotic coronary artery models: Experimental validation and transient simulation
,”
Comput. Methods Biomech. Biomed. Eng.
24
,
623
614
(
2021
).
57.
J.
Song
,
S.
Kouidri
, and
F.
Bakir
, “
Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis
,”
Biocybern. Biomed. Eng.
41
,
142
155
(
2021
).
58.
G.
Ding
,
K.-S.
Choi
,
B.
Ma
,
T.
Kato
, and
W.
Yuan
, “
Transitional pulsatile flows with stenosis in a two-dimensional channel
,”
Phys. Fluids
33
,
034115
(
2021
).
59.
C.
Cox
and
M. W.
Plesniak
, “
The effect of entrance flow development on vortex formation and wall shear stress in a curved artery model
,”
Phys. Fluids
33
,
101908
(
2021
).
60.
W.
Choi
,
H. M.
Kim
,
S.
Park
,
E.
Yeom
,
J.
Doh
, and
S. J.
Lee
, “
Variation in wall shear stress in channel networks of zebrafish models
,”
J. R. Soc. Interface
14
,
20160900
(
2017
).
61.
S.
Kumar
,
C. W.
Kim
,
D. J.
Son
,
C. W.
Ni
, and
H.
Jo
, “
Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo
,”
Sci. Data
1
,
140039
(
2014
).
62.
K.
Vahidkhah
,
Three-Dimensional Computational Simulation of Multiscale Multiphysics Cellular/Particulate Processes in Microcirculatory Blood Flow
(
Rutgers The State University of New Jersey-New Brunswick
,
2015
).
63.
A. G.
Hoekstra
,
S.
Alowayyed
,
E.
Lorenz
,
N.
Melnikova
,
L.
Mountrakis
,
B.
Van Rooij
,
A.
Svitenkov
,
G.
Závodszky
, and
P.
Zun
, “
Towards the virtual artery: A multiscale model for vascular physiology at the physics–chemistry–biology interface
,”
Philos. Trans. R. Soc. A
374
,
20160146
(
2016
).
64.
A.
Sakellarios
,
C. V.
Bourantas
,
S.-L.
Papadopoulou
,
Z.
Tsirka
,
T.
de Vries
,
P. H.
Kitslaar
,
C.
Girasis
,
K. K.
Naka
,
D. I.
Fotiadis
,
S.
Veldhof
 et al., “
Prediction of atherosclerotic disease progression using LDL transport modelling: A serial computed tomographic coronary angiographic study
,”
Eur. Heart J.-Cardiovasc. Imaging
18
,
11
18
(
2017
).
65.
F.
Donadoni
,
C.
Pichardo-Almarza
,
M.
Bartlett
,
A.
Dardik
,
S.
Homer-Vanniasinkam
, and
V.
Díaz-Zuccarini
, “
Patient-specific, multi-scale modeling of neointimal hyperplasia in vein grafts
,”
Front. Physiol.
8
,
226
(
2017
).
66.
A. N.
Beris
,
J. S.
Horner
,
S.
Jariwala
,
M.
Armstrong
, and
N. J.
Wagner
, “
Recent advances in blood rheology: A review
,”
Soft Matter
17
,
10591
(
2021
).
67.
K.
Giannokostas
,
P.
Moschopoulos
,
S.
Varchanis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Advanced constitutive modeling of the thixotropic elasto-visco-plastic behavior of blood: Description of the model and rheological predictions
,”
Materials
13
,
4184
(
2020
).
68.
A. J.
Apostolidis
and
A. N.
Beris
, “
The effect of cholesterol and triglycerides on the steady state shear rheology of blood
,”
Rheol. Acta
55
,
497
509
(
2016
).
69.
K.
Giannokostas
,
D.
Photeinos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Quantifying the non-Newtonian effects of pulsatile hemodynamics in tubes
,”
J. Non-Newtonian Fluid Mech.
298
,
104673
(
2021
).
70.
S.
Kang
,
A.
Lightbody
,
C.
Hill
, and
F.
Sotiropoulos
, “
High-resolution numerical simulation of turbulence in natural waterways
,”
Adv. Water Resour.
34
,
98
113
(
2011
).
71.
X.
Yang
,
F.
Sotiropoulos
,
R. J.
Conzemius
,
J. N.
Wachtler
, and
M. B.
Strong
, “
Large-eddy simulation of turbulent flow past wind turbines/farms: The virtual wind simulator (VWiS)
,”
Wind Energy
18
,
2025
2045
(
2015
).
72.
A.
Calderer
,
X.
Yang
,
D.
Angelidis
,
A.
Khosronejad
,
T.
Le
,
S.
Kang
,
A.
Gilmanov
,
L.
Ge
, and
I.
Borazjani
, “
Virtual flow simulator
,” Report No. 004806MLTPL00 (
University of Minnesota
,
2015
).
73.
X.
Yang
,
D.
Angelidis
,
A.
Khosronejad
,
T.
Le
,
S.
Kang
,
A.
Gilmanov
,
L.
Ge
,
I.
Borazjani
, and
A.
Calderer
, “
Virtual flow simulator [computer software]
,”
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
, https://github.com/SAFL-CFD-Lab/VFS-Wind.
74.
S.
Li
,
X.
Yang
,
G.
Jin
, and
G.
He
, “
Wall-resolved large-eddy simulation of turbulent channel flows with rough walls
,”
Theor. Appl. Mech. Lett.
11
,
100228
(
2021
).
75.
Z.
Li
and
X.
Yang
, “
Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles
,”
J. Fluid Mech.
921
,
A11
(
2021
).
76.
Z.
Zhou
,
T.
Wu
, and
X.
Yang
, “
Reynolds number effect on statistics of turbulent flows over periodic hills
,”
Phys. Fluids
33
,
105124
(
2021
).
77.
L.
Ge
and
F.
Sotiropoulos
, “
A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries
,”
J. Comput. Phys.
225
,
1782
1809
(
2007
).
78.
A.
Gilmanov
and
F.
Sotiropoulos
, “
A hybrid cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies
,”
J. Comput. Phys.
207
,
457
492
(
2005
).
79.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
,”
J. Comput. Phys.
227
,
7587
7620
(
2008
).
80.
A.
Khosronejad
,
S.
Kang
,
I.
Borazjani
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena
,”
Adv. Water Resour.
34
,
829
843
(
2011
).
81.
A.
Gilmanov
,
T. B.
Le
, and
F.
Sotiropoulos
, “
A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains
,”
J. Comput. Phys.
300
,
814
843
(
2015
).
82.
X.
Yang
,
G.-W.
He
, and
X.
Zhang
, “
Towards large-eddy simulation of turbulent flows with complex geometric boundaries using immersed boundary method
,”
AIAA Paper No. AIAA-2010-708
,
2010
.
83.
S.
Kang
, “
An improved near-wall modeling for large-eddy simulation using immersed boundary methods
,”
Int. J. Numer. Methods Fluids
78
,
76
88
(
2015
).
84.
B.
Shi
,
X.
Yang
,
G.
Jin
,
G.
He
, and
S.
Wang
, “
Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method
,”
Appl. Math. Mech.
40
,
305
320
(
2019
).
85.
Z.
Zhou
,
G.
He
, and
X.
Yang
, “
Wall model based on neural networks for les of turbulent flows over periodic hills
,”
Phys. Rev. Fluids
6
,
054610
(
2021
).
86.
A. J.
Iskander
,
R.
Naftalovich
, and
X.
Yang
, “
The carotid sinus acts as a mechanotransducer of shear oscillation rather than a baroreceptor
,”
Med. Hypotheses
134
,
109441
(
2020
).
87.
K.
Moyle
,
G.
Mallinson
,
C.
Occleshaw
,
B.
Cowan
, and
T.
Gentles
, “
Wall shear stress is the primary mechanism of energy loss in the fontan connection
,”
Pediatr. Cardiol.
27
,
309
315
(
2006
).
You do not currently have access to this content.