Intermittent swimming and schooling individually offer the possibility of energy economy for fish. To study the role of the simultaneous use of both behaviors, the intermittent swimming of two self-propelled plates in tandem configuration is investigated numerically. Two intermittent swimming modes, i.e., the multiple-tail beat (MT) mode and the half-tail beat (HT) mode, are considered. For solitary plate swimming intermittently while maintaining fixed bout period, the propulsion velocity and energy consumption decrease monotonically as the duty cycle increases, consistent with the prediction of the reduced-order model. A pair of plates swimming with independent duty cycle can form orderly configurations, without separating or colliding, when their duty cycles are similar. For the MT mode, the asymmetric wake of the leader enhances the drag on the following plate by inducing an additional oncoming flow against it, making the follower harder to follow. For the HT mode, the symmetric wake of the leader reduces the drag on the follower, making it easier to follow. No significant difference was found in the propulsive performance of intermittent swimming between the leading plate in orderly configurations and solitary plate. The results of efficiency indicate that the HT mode is more economical than the MT mode for the follower. Usually, the smaller the equilibrium gap spacing is, the more efficient the follower is. The results of the cost of transport show that the follower achieves better energy economy for higher propulsion velocity. The results provide some insight into the collective intermittent swimming of fish and are helpful for bionic design.

1.
E.
Shaw
, “
Schooling fishes: The school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants
,”
Am. Sci.
66
,
166
175
(
1978
).
2.
D.
Weihs
, “
Hydromechanics of fish schooling
,”
Nature
241
,
290
291
(
1973
).
3.
C. M.
Breder
, “
Fish schools as operational structures
,”
Fish. Bull.
74
,
471
502
(
1976
).
4.
V. V.
Belyayev
and
G. V.
Zuyev
, “
Hydrodynamic hypothesis of school formation in fishes
,”
J. Ichthyol.
9
,
578
584
(
1969
).
5.
P. A.
Fields
, “
Decreased swimming effort in groups of pacific mackerel (Scomber-japonicus)
,”
Am. Zool.
30
,
A134
A134
(
1990
).
6.
J.
Herskin
and
J. F.
Steffensen
, “
Energy savings in sea bass swimming in a school: Measurements of tail beat frequency and oxygen consumption at different swimming speeds
,”
J. Fish Biol.
53
,
366
376
(
1998
).
7.
B. L.
Partridge
, “
The structure and function of fish schools
,”
Am. Sci.
246
,
114
123
(
1982
).
8.
D. S.
Pavlov
and
A. O.
Kasumyan
, “
Patterns and mechanisms of schooling behavior in fish: A review
,”
J. Ichthyol.
40
,
S163
S231
(
2000
).
9.
M. J.
Lighthill
,
Mathematical Biofluid Dynamics
(
SIAM
,
Philadelphia
,
1975
).
10.
B. L.
Partridge
and
T. J.
Pitcher
, “
Evidence against a hydrodynamic function for fish schools
,”
Nature
279
,
418
419
(
1979
).
11.
T. M.
Broering
and
Y. S.
Lian
, “
The effect of phase angle and wing spacing on tandem flapping wings
,”
Acta Mech. Sin.
28
,
1557
1571
(
2012
).
12.
B. M.
Boschitsch
,
P. A.
Dewey
, and
A. J.
Smits
, “
Propulsive performance of unsteady tandem hydrofoils in an in-line configuration
,”
Phys. Fluids
26
,
051901
(
2014
).
13.
G. D.
Xu
and
W.
Xu
, “
Energy extraction of two flapping foils with tandem configurations and vortex interactions
,”
Eng. Anal. Boundary Elem.
82
,
202
209
(
2017
).
14.
B.
Ribeiro
,
Y.
Su
,
Q.
Guillaumin
,
K. S.
Breuer
, and
J. A.
Franck
, “
Wake-foil interactions and energy harvesting efficiency in tandem oscillating foils
,”
Phys. Rev. Fluids
6
,
074703
(
2021
).
15.
X. J.
Zhu
,
G. W.
He
, and
X.
Zhang
, “
Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration
,”
Phys. Rev. Lett.
113
,
238105
(
2014
).
16.
S.
Ramananarivo
,
F.
Fang
,
A.
Oza
,
J.
Zhang
, and
L.
Ristroph
, “
Flow interactions lead to orderly formations of flapping wings in forward flight
,”
Phys. Rev. Fluids
1
,
071201
(
2016
).
17.
Z.-R.
Peng
,
H. B.
Huang
, and
X.-Y.
Lu
, “
Collective locomotion of two closely spaced self-propelled flapping plates
,”
J. Fluid Mech.
849
,
1068
1095
(
2018
).
18.
J. W.
Newbolt
,
J.
Zhang
, and
L.
Ristroph
, “
Flow interactions between uncoordinated flapping swimmers give rise to group cohesion
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
2419
2424
(
2019
).
19.
Y.
Pan
and
H. B.
Dong
, “
Computational analysis of hydrodynamic interactions in a high-density fish school
,”
Phys. Fluids
32
,
121901
(
2020
).
20.
H. Y.
Yu
,
X.-Y.
Lu
, and
H. B.
Huang
, “
Collective locomotion of two uncoordinated undulatory self-propelled foils
,”
Phys. Fluids
33
,
011904
(
2021
).
21.
L. L.
Kang
,
Z. R.
Peng
,
H. B.
Huang
,
X.-Y.
Lu
, and
W. C.
Cui
, “
Active external control effect on the collective locomotion of two tandem self-propelled flapping plates
,”
Phys. Fluids
33
,
101901
(
2021
).
22.
X. H.
Li
,
J. Y.
Gu
,
Z.
Su
, and
Z. Q.
Yao
, “
Hydrodynamic analysis of fish schools arranged in the vertical plane
,”
Phys. Fluids
33
,
121905
(
2021
).
23.
D. L.
Kramer
and
R. L.
McLaughlin
, “
The behavioral ecology of intermittent locomotion
,”
Am. Zool.
42
,
137
153
(
2001
).
24.
D.
Weihs
, “
Energetic significance of changes in swimming modes during growth of larval anchovy, Engraulis mordax
,”
Fish. Bull.
77
,
597
604
(
1980
).
25.
F. E.
Fish
,
J. F.
Fegely
, and
C. J.
Xanthopoulos
, “
Burst-and-coast swimming in schooling fish (Notemigonus crysoleucas) with implications for energy economy
,”
Comp. Biochem. Physiol. Part A
100
,
633
637
(
1991
).
26.
G.
Wu
,
Y.
Yang
, and
L.
Zeng
, “
Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi)
,”
J. Exp. Biol.
210
,
2181
(
2007
).
27.
J. J.
Videler
and
D.
Weihs
, “
Energetic advantages of burst-and-coast swimming of fish at high speeds
,”
J. Exp. Biol.
97
,
169
178
(
1982
).
28.
R. W.
Blake
, “
Functional design and burst-and-coast swimming in fishes
,”
Can. J. Zool.
61
,
2491
2494
(
1983
).
29.
U.
Müller
,
E. J.
Stamhuis
, and
J. J.
Videler
, “
Hydrodynamics of unsteady fish swimming and the effects of body size: Comparing the flow fields of fish larvae and adults
,”
J. Exp. Biol.
203
,
193
206
(
2000
).
30.
M. J.
McHenry
, “
The mechanical scaling of coasting in zebrafish (Danio rerio)
,”
J. Exp. Biol.
208
,
2289
2301
(
2005
).
31.
I.
Ashraf
,
H.
Bradshaw
,
T. T.
Ha
,
J.
Halloy
,
R.
Godoy-Diana
, and
B.
Thiria
, “
Simple phalanx pattern leads to energy saving in cohesive fish schooling
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
9599
9604
(
2017
).
32.
G.
Li
,
I.
Ashraf
,
B.
Franois
,
D.
Kolomenskiy
,
F.
Lechenault
,
R.
Godoy-Diana
, and
B.
Thiria
, “
Burst-and-coast swimmers optimize gait by adapting unique intrinsic cycle
,”
Commun. Biol.
4
,
40
(
2021
).
33.
T.
Noda
,
K.
Fujioka
,
H.
Fukuda
,
H.
Mitamura
,
K.
Ichikawa
, and
N.
Arai
, “
The influence of body size on the intermittent locomotion of a pelagic schooling fish
,”
Proc. R. Soc. B
283
,
20153019
(
2016
).
34.
D.
Weihs
, “
Energetic advantages of burst swimming of fish
,”
J. Theor. Biol.
48
,
215
229
(
1974
).
35.
J. J.
Videler
, “
Swimming movements, body structure and propulsion in cod (Gadus morhua)
,” in
Vertebrate Locomotion
, edited by
M. H.
Day
(
Academic Press
,
London
,
1981
), pp.
1
27
.
36.
M. J.
Lighthill
, “
Large-amplitude elongated-body theory of fish locomotion
,”
Proc. R. Soc. London, Ser. B
179
,
125
138
(
1971
).
37.
E.
Akoz
and
K. W.
Moored
, “
Unsteady propulsion by an intermittent swimming gait
,”
J. Fluid Mech.
834
,
149
172
(
2018
).
38.
E.
Akoz
,
A.
Mivehchi
, and
K. W.
Moored
, “
Intermittent unsteady propulsion with a combined heaving and pitching foil
,”
Phys. Rev. Fluids
6
,
043101
(
2021
).
39.
M. H.
Chung
, “
On burst-and-coast swimming performance in fish-like locomotion
,”
Bioinspiration Biomimetics
4
,
036001
(
2009
).
40.
D.
Floryan
,
T. V.
Buren
, and
A. J.
Smits
, “
Forces and energetics of intermittent swimming
,”
Acta Mech. Sin.
33
,
725
(
2017
).
41.
J.
Ryu
and
H. J.
Sung
, “
Intermittent locomotion of a self-propelled plate
,”
Phys. Fluids
31
,
111902
(
2019
).
42.
L.
Dai
,
G. W.
He
,
Z.
Xiang
, and
Z.
Xing
, “
Intermittent locomotion of a fish-like swimmer driven by passive elastic mechanism
,”
Bioinspiration Biomimetics
13
,
056011
(
2018
).
43.
K.
Liu
,
H. B.
Huang
, and
X.-Y.
Lu
, “
Hydrodynamic benefits of intermittent locomotion of a self-propelled flapping plate
,”
Phys. Rev. E
102
,
053106
(
2020
).
44.
S.
Gupta
,
N.
Thekkethil
,
A.
Agrawal
,
K.
Hourigan
,
M. C.
Thompson
, and
A.
Sharma
, “
Body-caudal fin fish-inspired self-propulsion study on burst-and-coast and continuous swimming of a hydrofoil model
,”
Phys. Fluids
33
,
091905
(
2021
).
45.
I.
Ashraf
,
S. V.
Wassenbergh
, and
S.
Verma
, “
Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri
),”
Bioinspiration Biomimetics
16
,
016002
(
2021
).
46.
Q.
Bone
,
J.
Kiceniuk
, and
D. R.
Jones
, “
On the role of the different fibre types in fish myotome at intermediate speeds
,”
Fish. Bull.
76
,
691
699
(
1978
).
47.
I.
Asharf
, “
Interactions in collective fish swimming
,” Ph.D. thesis (
Université Sorbonne Paris Cité
,
2018
).
48.
J. C.
Liao
,
D. N.
Beal
,
G. V.
Lauder
, and
M. S.
Triantafyllou
, “
Fish exploiting vortices decrease muscle activity
,”
Science
302
,
1566
1569
(
2003
).
49.
J.
Hunter
and
J.
Zweifel
, “
Swimming speed, tail beat frequency, tail beat amplitude, and size in jack mackerel, Trachurus symmetricus, and other fishes
,”
Fish. Bull.
69
,
253
265
(
1971
).
50.
B. S. H.
Connell
and
D. K. P.
Yue
, “
Flapping dynamics of a flag in a uniform stream
,”
J. Fluid Mech.
581
,
33
67
(
2007
).
51.
S. Y.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
329
(
1998
).
52.
S.
Succi
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
(
Oxford University Press
,
2001
).
53.
J.
Doyle
and
E.
Desantiago
, “
Nonlinear analysis of thin-walled structures: Statics, dynamics, and stability. Mechanical engineering series
,”
Appl. Mech. Rev.
55
,
B92
(
2002
).
54.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
55.
R.-N.
Hua
,
L. D.
Zhu
, and
X.-Y.
Lu
, “
Locomotion of a flapping flexible plate
,”
Phys. Fluids
25
,
121901
(
2013
).
56.
R.-N.
Hua
,
L.
Zhu
, and
X.-Y.
Lu
, “
Dynamics of fluid flow over a circular flexible plate
,”
J. Fluid Mech.
759
,
56
72
(
2014
).
57.
C.
Tang
,
N. S.
Liu
, and
X.-Y.
Lu
, “
Dynamics of an inverted flexible plate in a uniform flow
,”
Phys. Fluids
27
,
073601
(
2015
).
58.
Z.-R.
Peng
,
H. B.
Huang
, and
X.-Y.
Lu
, “
Hydrodynamic schooling of multiple self-propelled flapping plates
,”
J. Fluid Mech.
853
,
587
600
(
2018
).
59.
A.
De Rosis
,
G.
Falcucci
,
S.
Ubertini
, and
F.
Ubertini
, “
A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–structure interaction
,”
Comput. Fluids
86
,
558
568
(
2013
).
60.
A.
De Rosis
,
S.
Ubertini
, and
F.
Ubertini
, “
A partitioned approach for two-dimensional fluid–structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary
,”
J. Fluids Struct.
45
,
202
215
(
2014
).
61.
A.
De Rosis
,
G.
Falcucci
,
S.
Ubertini
, and
F.
Ubertini
, “
Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method
,”
J. Fluids Struct.
49
,
516
533
(
2014
).
62.
B.
Kim
,
S. G.
Park
,
W.
Huang
, and
H. J.
Sung
, “
Self-propelled heaving and pitching flexible fin in a quiescent flow
,”
Int. J. Heat Fluid Flow
62
,
273
281
(
2016
).
63.
Z. L.
Guo
,
C. G.
Zheng
, and
B. C.
Shi
, “
Discrete lattice effects on forcing terms in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
64.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
65.
D.
Yu
,
R.
Mei
, and
W.
Shyy
, “
A multi-block lattice Boltzmann method for viscous fluid flows
,”
Int. J. Numer. Methods Fluids
39
,
99
120
(
2002
).
66.
P.
Bhatnagar
,
E.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
67.
Y.
Cheng
and
J.
Li
, “
Introducing unsteady non-uniform source terms into the lattice Boltzmann model
,”
Int. J. Numer. Methods Fluids
56
,
629
641
(
2008
).
68.
P. W.
Webb
, “
The swimming energetics of trout
,”
J. Exp. Biol.
55
,
521
540
(
1971
).
69.
Y. T.
Wu
, “
Swimming of a waving plate
,”
J. Fluid Mech.
10
,
321
344
(
1961
).
You do not currently have access to this content.