The influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight are investigated using a hybrid framework of an immersed boundary Navier–Stokes solver for the flow field and the Ffowcs Williams–Hawkings (FW–H) analogy for the sound field. A rigid rectangular wing with an aspect ratio of 2 undergoes pitching and stroke motions at a Reynolds number (Re) of 310 and a Mach number (M) of 0.012. Simulations are conducted by varying the dimensionless wavenumber k* from 2π to 10π and wave amplitude 2h* from 0.25 to 1.0. We find that at k*=8π and 2h*=1.5 (D4), the average sound power level is reduced by up to 6.8 dB within the Strouhal number (St) between 2.0 and 4.0 compared to that of a plain trailing edge while the lift coefficient is maintained. The directivity at St = 0.2, St = 0.4, St = 2.2, and St = 2.4 is discussed. It is found that the serrations of D4 do not affect the directivity for the first two frequencies and significantly reduce the magnitude of the directivity for the last two frequencies. The serrations of D4 considerably alter the flow field near the wing surface and reduced the surface pressure fluctuations near the wing tip, leading to the noise reduction. The lift coefficient of D4 is not significantly changed, because the reduction in the pressure-contributed lift is compensated by an increase in the shear stress-contributed lift. The serrations with higher 2h* and k* have larger shear stress-contributed lift.

1.
M. F.
Platzer
,
K. D.
Jones
,
J.
Young
, and
J. C.
Lai
, “
Flapping wing aerodynamics: Progress and challenges
,”
AIAA J.
46
,
2136
2149
(
2008
).
2.
W.
Shyy
,
H.
Aono
,
S. K.
Chimakurthi
,
P.
Trizila
,
C.-K.
Kang
,
C. E.
Cesnik
, and
H.
Liu
, “
Recent progress in flapping wing aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
46
,
284
327
(
2010
).
3.
P.
Zhou
,
Q.
Liu
,
S.
Zhong
,
Y.
Fang
, and
X.
Zhang
, “
A study of the effect of serration shape and flexibility on trailing edge noise
,”
Phys. Fluids
32
,
127114
(
2020
).
4.
G.
Shi
,
Q.
Xiao
, and
Q.
Zhu
, “
Effects of time-varying flexibility on the propulsion performance of a flapping foil
,”
Phys. Fluids
32
,
121904
(
2020
).
5.
L.
Chen
,
C.
Zhou
, and
J.
Wu
, “
The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low reynolds number
,”
Phys. Fluids
32
,
011906
(
2020
).
6.
W.
Wang
,
H.
Huang
, and
X.-Y.
Lu
, “
Interplay of chordwise stiffness and shape on performance of self-propelled flexible flapping plate
,”
Phys. Fluids
33
,
091904
(
2021
).
7.
R.
Xu
,
X.
Zhang
, and
H.
Liu
, “
Effects of wing-to-body mass ratio on insect flapping flights
,”
Phys. Fluids
33
,
021902
(
2021
).
8.
J.
Young
and
M.
Garratt
, “
Drones become even more insect-like
,”
Science
368
,
586
587
(
2020
).
9.
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Improving power-extraction efficiency of a flapping plate: From passive deformation to active control
,”
J. Fluids Struct.
51
,
384
392
(
2014
).
10.
J.
Young
,
J. C.
Lai
, and
M. F.
Platzer
, “
A review of progress and challenges in flapping foil power generation
,”
Prog. Aerosp. Sci.
67
,
2
28
(
2014
).
11.
Y.
Nan
,
M.
Karásek
,
M. E.
Lalami
, and
A.
Preumont
, “
Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle
,”
Bioinspiration Biomimetics
12
,
026010
(
2017
).
12.
W.
Shyy
,
H.
Aono
,
C.-K.
Kang
, and
H.
Liu
,
An Introduction to Flapping Wing Aerodynamics
(
Cambridge University Press
,
2013
), Vol.
37
.
13.
S. A.
Ansari
,
K.
Knowles
, and
R.
Zbikowski
, “
Insectlike flapping wings in the hover part i: Effect of wing kinematics
,”
J. Aircraft
45
,
1945
1954
(
2008
).
14.
A.
Shahzad
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover
,”
Phys. Fluids
28
,
111901
(
2016
).
15.
C.
Rao
and
H.
Liu
, “
Aerodynamic robustness in owl-inspired leading-edge serrations: A computational wind-gust model
,”
Bioinspiration Biomimetics
13
,
056002
(
2018
).
16.
M. B.
Anwar
,
A.
Shahzad
, and
M. N.
Mumtaz Qadri
, “
Investigating the effects of leading-edge tubercles on the aerodynamic performance of insect-like flapping wing
,”
Proc. Inst. Mech. Eng., Part C
235
,
330–341
(
2021
).
17.
J.
Sueur
,
E. J.
Tuck
, and
D.
Robert
, “
Sound radiation around a flying fly
,”
J. Acoust. Soc. Am.
118
,
530
538
(
2005
).
18.
B. J.
Arthur
,
K. S.
Emr
,
R. A.
Wyttenbach
, and
R. R.
Hoy
, “
Mosquito (aedes aegypti) flight tones: Frequency, harmonicity, spherical spreading, and phase relationships
,”
J. Acoust. Soc. Am.
135
,
933
941
(
2014
).
19.
A.
Boonman
,
Y.
Yovel
, and
O.
Eitan
, “
Wing-beat frequency and its acoustics in birds and bats
,”
Integr. Comp. Biol.
60
,
1080
(
2020
).
20.
Y.
Bae
and
Y. J.
Moon
, “
Aerodynamic sound generation of flapping wing
,”
J. Acoust. Soc. Am.
124
,
72
81
(
2008
).
21.
L.
Wang
and
F.-B.
Tian
, “
Numerical study of flexible flapping wings with an immersed boundary method: Fluid–structure–acoustics interaction
,”
J. Fluids Struct.
90
,
396
409
(
2019
).
22.
L.
Wang
,
F.-B.
Tian
, and
J. C.
Lai
, “
An immersed boundary method for fluid–structure–acoustics interactions involving large deformations and complex geometries
,”
J. Fluids Struct.
95
,
102993
(
2020
).
23.
L.
Wang
and
F.-B.
Tian
, “
Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight
,”
J. Fluids Struct.
99
,
103165
(
2020
).
24.
Y.
Inada
,
H.
Aono
,
H.
Liu
, and
T.
Aoyama
, “
Numerical analysis of sound generation of insect flapping wings
,”
Theor. Appl. Mech. Jpn.
57
,
437
447
(
2009
).
25.
B.
Geng
,
Q.
Xue
,
X.
Zheng
,
G.
Liu
,
Y.
Ren
, and
H.
Dong
, “
The effect of wing flexibility on sound generation of flapping wings
,”
Bioinspiration Biomimetics
13
,
016010
(
2017
).
26.
E.
Sarradj
,
C.
Fritzsche
, and
T.
Geyer
, “
Silent owl flight: Bird flyover noise measurements
,”
AIAA J.
49
,
769
779
(
2011
).
27.
D.
Li
,
X.
Liu
,
F.
Hu
, and
L.
Wang
, “
Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls
,”
Bioinspiration Biomimetics
15
,
016009
(
2019
).
28.
R.
Sandberg
and
L.
Jones
, “
Direct numerical simulations of low reynolds number flow over airfoils with trailing-edge serrations
,”
J. Sound Vib.
330
,
3818
3831
(
2011
).
29.
L.
Jones
and
R.
Sandberg
, “
Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations
,”
J. Fluid Mech.
706
,
295
322
(
2012
).
30.
D.
Moreau
and
C.
Doolan
, “
The generation of tonal noise from sawtooth trailing-edge serrations at low Reynolds numbers
,”
Aeronaut. J.
120
,
971
983
(
2016
).
31.
D. J.
Moreau
and
C. J.
Doolan
, “
Noise-reduction mechanism of a flat-plate serrated trailing edge
,”
AIAA J.
51
,
2513
2522
(
2013
).
32.
A.
Celik
,
J. L.
Bowen
, and
M.
Azarpeyvand
, “
Effect of trailing-edge bevel on the aeroacoustics of a flat-plate
,”
Phys. Fluids
32
,
105116
(
2020
).
33.
M. S.
Howe
, “
Aerodynamic noise of a serrated trailing edge
,”
J. Fluids Struct.
5
,
33
45
(
1991
).
34.
B.
Lyu
and
L. J.
Ayton
, “
Rapid noise prediction models for serrated leading and trailing edges
,”
J. Sound Vib.
469
,
115136
(
2020
).
35.
B. A.
Singer
,
K. S.
Brentner
,
D. P.
Lockard
, and
G. M.
Lilley
, “
Simulation of acoustic scattering from a trailing edge
,”
J. Sound Vib.
230
,
541
560
(
2000
).
36.
H.
Dai
,
H.
Luo
, and
J. F.
Doyle
, “
Dynamic pitching of an elastic rectangular wing in hovering motion
,”
J. Fluid Mech.
693
,
473
499
(
2012
).
37.
L. J.
Ayton
, “
Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges
,”
J. Fluid Mech.
849
,
448
466
(
2018
).
38.
F.-B.
Tian
,
H.
Luo
,
L.
Zhu
,
J. C.
Liao
, and
X.-Y.
Lu
, “
An efficient immersed boundary-lattice boltzmann method for the hydrodynamic interaction of elastic filaments
,”
J. Comput. Phys.
230
,
7266
7283
(
2011
).
39.
Q.
Huang
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Transition to chaos in a two-sided collapsible channel flow
,”
J. Fluid Mech.
926
,
A15
(
2021
).
40.
J.-H.
Seo
,
T. L.
Hedrick
, and
R.
Mittal
, “
Mechanism and scaling of wing tone generation in mosquitoes
,”
Bioinspiration Biomimetics
15
,
016008
(
2019
).
41.
R.
Komatsu
,
W.
Iwakami
, and
Y.
Hattori
, “
Direct numerical simulation of aeroacoustic sound by volume penalization method
,”
Comput. Fluids
130
,
24
36
(
2016
).
42.
K.
Nedunchezian
,
C-k
Kang
, and
H.
Aono
, “
Effects of flapping wing kinematics on the aeroacoustics of hovering flight
,”
J. Sound Vib.
442
,
366
383
(
2019
).
43.
T.
Chung
,
Computational Fluid Dynamics
(
Cambridge University Press
,
2002
).
44.
W.-X.
Huang
and
F.-B.
Tian
, “
Recent trends and progress in the immersed boundary method
,”
Proc. Inst. Mech. Eng., Part C
233
,
7617
7636
(
2019
).
45.
D.
Goldstein
,
R.
Handler
, and
L.
Sirovich
, “
Modeling a no-slip flow boundary with an external force field
,”
J. Comput. Phys.
105
,
354
366
(
1993
).
46.
A.
Calderer
,
X.
Yang
,
D.
Angelidis
,
A.
Khosronejad
,
T.
Le
,
S.
Kang
,
A.
Gilmanov
,
L.
Ge
, and
I.
Borazjani
, “
Virtual flow simulator
,” Technical Report No. VFS-Wind; 004806MLTPL00 (
University of Minnesota
,
2015
).
47.
F.
Farassat
, “
Derivation of formulations 1 and 1a of farassat
,” NASA/TM-2007-214853 (
2007
).
48.
B. J.
Hightower
,
P. W.
Wijnings
,
R.
Scholte
,
R.
Ingersoll
,
D. D.
Chin
,
J.
Nguyen
,
D.
Shorr
, and
D.
Lentink
, “
How hummingbirds hum: Oscillating aerodynamic forces explain timbre of the humming sound
,” preprint arXiv:2009.01933 (
2020
).
49.
J. M.
Turner
and
J. W.
Kim
, “
Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall
,”
Phys. Fluids
32
,
065103
(
2020
).
50.
C. J.
Clark
and
E. A.
Mistick
, “
Humming hummingbirds, insect flight tones and a model of animal flight sound
,”
J. Exp. Biol.
223
,
jeb214965
(
2020
).
51.
T.
Nakata
,
H.
Liu
,
Y.
Tanaka
,
N.
Nishihashi
,
X.
Wang
, and
A.
Sato
, “
Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle
,”
Bioinspiration Biomimetics
6
,
045002
(
2011
).
52.
A.
Burkart
,
K.
Lunau
, and
C.
Schlindwein
, “
Comparative bioacoustical studies on flight and buzzing of neotropical bees
,”
J. Pollination Ecol.
6
,
118–124
(
2012
).
53.
H.
Aono
,
K.
Kikkawa
,
H.
Ishikawa
, and
C.-K.
Kang
, “
A numerical study of sound generation on pitch and plunge wing at low Reynolds numbers
,” in
AIAA Scitech 2020 Forum
(American Institute of Aeronautics and Astronautics,
2020
), p.
1495
.
54.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis Measurement Procedures
(
John Wiley & Sons
,
2011
), Vol.
729
.
55.
F.
Avallone
,
W.
Van Der Velden
,
D.
Ragni
, and
D.
Casalino
, “
Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations
,”
J. Fluid Mech.
848
,
560
591
(
2018
).
56.
T. P.
Chong
and
A.
Vathylakis
, “
On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge
,”
J. Sound Vib.
354
,
65
90
(
2015
).
57.
M.
Sanjosé
,
C.
Méon
,
S.
Moreau
,
A.
Idier
, and
P.
Laffay
, “
Direct numerical simulation of acoustic reduction using serrated trailing-edge on an isolated airfoil
,” in 20th AIAA/CEAS Aeroacoustics Conference (American Institute of Aeronautics and Astronautics,
2014
) p.
2324
.
58.
S.
Lee
,
L.
Ayton
,
F.
Bertagnolio
,
S.
Moreau
,
T. P.
Chong
, and
P.
Joseph
, “
Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application
,”
Prog. Aerosp. Sci.
126
,
100737
(
2021
).
You do not currently have access to this content.