Experimental studies dealing with the wake of isolated stationary bluff bodies are reviewed. After briefly recalling the pioneering works in this domain, the paper focuses on recent research conducted with the latest experimental methods and techniques. The review encompasses a range of topics, including the effects of bluff body geometry (non-circular cross sections and non-uniformity in spanwise direction), steady and unsteady (periodic and non-periodic) inflow conditions, surface proximity (rigid wall, confinement, and water free surface) and non-Newtonian fluids. Focus is brought to the flow physics of the wakes, especially the complex three-dimensional and oscillatory behaviors induced by the periodic vortex shedding phenomenon. The paper aims to offer a critical and systematic review of new knowledge and findings on the subject area, as well as the most frequently adopted experimental techniques. The review also helps identifying knowledge gaps in the literature that need to be addressed in future investigations.

1.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
2.
C. H. K.
Williamson
, “
Three-dimensional vortex dynamics in bluff body wakes
,”
Exp. Therm. Fluid Sci.
12
,
150
168
(
1996
).
3.
C. H. K.
Williamson
, “
Advances in our understanding of vortex dynamics in bluff body wakes
,”
J. Wind Eng. Ind. Aerodyn.
69–71
,
3
32
(
1997
).
4.
P.
Hishikar
,
S. K.
Dhiman
,
A. K.
Tiwari
, and
V. K.
Gaba
, “
Analysis of flow characteristics of two circular cylinders in cross-flow with varying Reynolds number: A review
,”
J. Therm. Anal. Calorim.
(published online) (
2021
).
5.
D.
Sumner
, “
Two circular cylinders in cross-flow: A review
,”
J. Fluids Struct.
26
,
849
899
(
2010
).
6.
J.
Wang
,
L.
Geng
,
L.
Ding
,
H.
Zhu
, and
D.
Yurchenko
, “
The state-of-the-art review on energy harvesting from flow-induced vibrations
,”
Appl. Energy
267
,
114902
(
2020
).
7.
J-s
Wang
,
D.
Fan
, and
K.
Lin
, “
A review on flow-induced vibration of offshore circular cylinders
,”
J. Hydrodyn.
32
,
415
440
(
2020
).
8.
D.
Li
,
Y.
Wu
,
A.
Da Ronch
, and
J.
Xiang
, “
Energy harvesting by means of flow-induced vibrations on aerospace vehicles
,”
Prog. Aerosp. Sci.
86
,
28
62
(
2016
).
9.
T.
Sarpkaya
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
447
(
2004
).
10.
C. H. K.
Williamson
and
R.
Govardhan
, “
A brief review of recent results in vortex-induced vibrations
,”
J. Wind Eng. Ind. Aerodyn.
96
,
713
735
(
2008
).
11.
X.
Wu
,
F.
Ge
, and
Y.
Hong
, “
A review of recent studies on vortex-induced vibrations of long slender cylinders
,”
J. Fluids Struct.
28
,
292
308
(
2012
).
12.
M. M.
Zdravkovich
,
Flow Around Circular Cylinders: Volume 2: Applications
(
Oxford University Press
,
1997
).
13.
H.
Bénard
, “
Formation de centres de giration à l'arrière d'un obstacle en movement
,”
C. R. Acad. Sci.
147
,
839
842
(
1908
).
14.
T.
Von Kármán
, “
Über den mechanismus des widerstandes, den ein bewegter körper in einer flüssigkeit erfährt
,”
Nachr. Gesells. Wiss. Göttingen
1911
,
509
517
.
15.
M.
Matsumoto
, “
Vortex shedding of bluff bodies: A review
,”
J. Fluids Struct.
13
,
791
811
(
1999
).
16.
J. C. R.
Hunt
,
H.
Kawai
,
S. R.
Ramsey
,
G.
Pedrizetti
, and
R. J.
Perkins
, “
A review of velocity and pressure fluctuations in turbulent flows around bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
35
,
49
85
(
1990
).
17.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: Review and new measurements
,”
J. Fluids Struct.
17
,
57
96
(
2003
).
18.
J. F.
Derakhshandeh
and
M. M.
Alam
, “
A review of bluff body wakes
,”
Ocean Eng.
182
,
475
488
(
2019
).
19.
M. C.
Thompson
,
T.
Leweke
, and
K.
Hourigan
, “
Bluff bodies and wake–wall interactions
,”
Annu. Rev. Fluid Mech.
53
,
347
376
(
2021
).
20.
L. N.
Cattafesta
 III
and
M.
Sheplak
, “
Actuators for active flow control
,”
Annu. Rev. Fluid Mech.
43
,
247
272
(
2011
).
21.
S.
Rashidi
,
M.
Hayatdavoodi
, and
J. A.
Esfahani
, “
Vortex shedding suppression and wake control: A review
,”
Ocean Eng.
126
,
57
80
(
2016
).
22.
D.-L.
Gao
,
W.-L.
Chen
,
H.
Li
, and
H.
Hu
, “
Flow around a slotted circular cylinder at various angles of attack
,”
Exp. Fluids
58
,
132
(
2017
).
23.
D.-L.
Gao
,
W.-L.
Chen
,
H.
Li
, and
H.
Hu
, “
Flow around a circular cylinder with slit
,”
Exp. Therm. Fluid Sci.
82
,
287
301
(
2017
).
24.
R.
Woszidlo
,
F.
Ostermann
, and
H.-J.
Schmidt
, “
Fundamental properties of fluidic oscillators for flow control applications
,”
AIAA J.
57
,
978
992
(
2019
).
25.
A.
Mehraban
,
M.
Djavareshkian
,
Y.
Sayegh
,
B.
Forouzi Feshalami
,
Y.
Azargoon
,
A.
Zaree
, and
M.
Hassanalian
, “
Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers
,”
Proc. Inst. Mech. Eng. Part G
235
,
439
450
(
2021
).
26.
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
,
Springer Handbook of Experimental Fluid Mechanics
(
Springer
,
2007
).
27.
A. J.
Smits
and
T. T.
Lim
,
Flow Visualization: Techniques and Examples
(
Imperial College Press
,
2012
).
28.
B.
Chanetz
,
J.
Délery
,
P.
Gilliéron
,
P.
Gnemmi
,
E. R.
Gowree
, and
P.
Perrier
,
Experimental Aerodynamics
(
Springer
,
2020
).
29.
C.
Morton
and
S.
Yarusevych
, “
Three-dimensional flow and surface visualization using hydrogen bubble technique
,”
J. Visualization
18
,
47
58
(
2015
).
30.
M.
Matsumoto
,
H.
Shirato
,
K.
Araki
,
T.
Haramura
, and
T.
Hashimoto
, “
Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
91
,
155
163
(
2003
).
31.
M. M.
Alam
and
Y.
Zhou
, “
Turbulent wake of an inclined cylinder with water running
,”
J. Fluid Mech.
589
,
261
303
(
2007
).
32.
W.-L.
Chen
,
D.-L.
Gao
,
W.-Y.
Yuan
,
H.
Li
, and
H.
Hu
, “
Passive jet control of flow around a circular cylinder
,”
Exp. Fluids
56
,
201
(
2015
).
33.
S.
Li
and
M.
Li
, “
Spectral analysis and coherence of aerodynamic lift on rectangular cylinders in turbulent flow
,”
J. Fluid Mech.
830
,
408
438
(
2017
).
34.
S.
Discetti
and
A.
Ianiro
,
Experimental Aerodynamics
(
CRC Press
,
2017
).
35.
J. D.
Hooper
and
A. R.
Musgrove
, “
Reynolds stress, mean velocity, and dynamic static pressure measurement by a four-hole pressure probe
,”
Exp. Therm. Fluid Sci.
15
,
375
383
(
1997
).
36.
J.
Chen
,
B. S.
Haynes
, and
D. F.
Fletcher
, “
Cobra probe measurements of mean velocities, Reynolds stresses and higher-order velocity correlations in pipe flow
,”
Exp. Therm. Fluid Sci.
21
,
206
217
(
2000
).
37.
Y.
Xue
,
M.
Arjomandi
, and
R.
Kelso
, “
Experimental study of the thermal separation in a vortex tube
,”
Exp. Therm. Fluid Sci.
46
,
175
182
(
2013
).
38.
Y.
Guo
and
D. H.
Wood
, “
Instantaneous velocity and pressure measurements in turbulent mixing layers
,”
Exp. Therm. Fluid Sci.
24
,
139
150
(
2001
).
39.
K. M.
Argüelles Díaz
,
J. M.
Fernández Oro
, and
E.
Blanco Marigorta
, “
Extended angular range of a three-hole cobra pressure probe for incompressible flow
,”
J. Fluids Eng.
130
,
101401
(
2008
).
40.
Z.
Zhang
,
LDA Application Methods: Laser Doppler Anemometry for Fluid Dynamics
(
Springer
,
2010
).
41.
B. J.
Cantwell
, “
A flying hot wire study of the turbulent near wake of a circular cylinder at a Reynolds number of 140 000
, Ph.D. dissertation (
California Institute of Technology
,
1976
).
42.
J. S.
Wilson
,
Sensor Technology Handbook
(
Elsevier
,
2004
).
43.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kähler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
2018
).
44.
J.-H.
Yoon
and
S.-J.
Lee
, “
Direct comparison of 2D PIV and stereoscopic PIV measurements
,”
Meas. Sci. Technol.
13
,
1631
1642
(
2002
).
45.
Z.
Liu
,
Y.
Zheng
,
L.
Jia
,
J.
Jiao
, and
Q.
Zhang
, “
Stereoscopic PIV studies on the swirling flow structure in a gas cyclone
,”
Chem. Eng. Sci.
61
,
4252
4261
(
2006
).
46.
G. E.
Elsinga
,
F.
Scarano
,
B.
Wieneke
, and
B. W.
van Oudheusden
, “
Tomographic particle image velocimetry
,”
Exp. Fluids
41
,
933
947
(
2006
).
47.
D.
Schanz
,
S.
Gesemann
, and
A.
Schröder
, “
Shake-The-Box: Lagrangian particle tracking at high particle image densities
,”
Exp. Fluids
57
,
70
(
2016
).
48.
M. P.
Rockwood
and
M. A.
Green
, “
Real-time identification of vortex shedding in the wake of a circular cylinder
,”
AIAA J.
57
,
223
238
(
2019
).
49.
A.
Roshko
, “
Perspectives on bluff body aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
49
,
79
100
(
1993
).
50.
O.
Cadot
,
A.
Desai
,
S.
Mittal
,
S.
Saxena
, and
B.
Chandra
, “
Statistics and dynamics of the boundary layer reattachments during the drag crisis transitions of a circular cylinder
,”
Phys. Fluids
27
,
014101
(
2015
).
51.
A.
Desai
,
S.
Mittal
, and
S.
Mittal
, “
Experimental investigation of vortex shedding past a circular cylinder in the high subcritical regime
,”
Phys. Fluids
32
,
014105
(
2020
).
52.
T.
Lee
and
R.
Budwig
, “
A study of the effect of aspect ratio on vortex shedding behind circular cylinders
,”
Phys. Fluids A
3
,
309
315
(
1991
).
53.
S.
Szepessy
and
P. W.
Bearman
, “
Aspect ratio and end plate effects on vortex shedding from a circular cylinder
,”
J. Fluid Mech.
234
,
191
217
(
1992
).
54.
C.
Norberg
, “
An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio
,”
J. Fluid Mech.
258
,
287
316
(
1994
).
55.
W.
Ma
,
B.
Huang
,
D.
Zheng
,
M.
Lu
, and
H.
Li
, “
Effect of the presence of end plates and aspect ratio on the aerodynamic forces on circular cylinders in various flow regimes
,”
Fluid Dyn. Res.
51
,
055503
(
2019
).
56.
A. E.
Perry
,
M. S.
Chong
, and
T. T.
Lim
, “
The vortex-shedding process behind two-dimensional bluff bodies
,”
J. Fluid Mech.
116
,
77
90
(
1982
).
57.
M.
Coutanceau
and
R.
Bouard
, “
Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow
,”
J. Fluid Mech.
79
,
231
256
(
1977
).
58.
A.
Goharzadeh
and
A.
Molki
, “
Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV)
,”
Eur. J. Phys.
36
,
015001
(
2015
).
59.
B.
Gibeau
and
S.
Ghaemi
, “
The mode B structure of streamwise vortices in the wake of a two-dimensional blunt trailing edge
,”
J. Fluid Mech.
884
,
A12
(
2020
).
60..
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer
,
2016
).
61.
T.
Karasudani
and
M.
Funakoshi
, “
Evolution of a vortex street in the far wake of a cylinder
,”
Fluid Dyn. Res.
14
,
331
(
1994
).
62.
P.
Vorobieff
,
D.
Georgiev
, and
M. S.
Ingber
, “
Onset of the second wake: Dependence on the Reynolds number
,”
Phys. Fluids
14
,
L53
L56
(
2002
).
63.
C.
Lin
and
S.-C.
Hsieh
, “
Convection velocity of vortex structures in the near wake of a circular cylinder
,”
J. Eng. Mech.
129
,
1108
1118
(
2003
).
64.
T.
Leweke
and
C. H. K.
Williamson
, “
Three-dimensional instabilities in wake transition
,”
Eur. J. Mech. B Fluids
17
,
571
586
(
1998
).
65.
B.
Gibeau
,
C. R.
Koch
, and
S.
Ghaemi
, “
Secondary instabilities in the wake of an elongated two-dimensional body with a blunt trailing edge
,”
J. Fluid Mech.
846
,
578
604
(
2018
).
66.
M.
Brede
,
H.
Eckelmann
, and
D.
Rockwell
, “
On secondary vortices in the cylinder wake
,”
Phys. Fluids
8
,
2117
2124
(
1996
).
67.
J. H.
Gerrard
, “
The wakes of cylindrical bluff bodies at low Reynolds number
,”
Philos. Trans. R. Soc. London, Ser. A
288
,
351
382
(
1978
).
68.
H. Q.
Zhang
,
U.
Fey
,
B. R.
Noack
,
M.
König
, and
H.
Eckelmann
, “
On the transition of the cylinder wake
,”
Phys. Fluids
7
,
779
794
(
1995
).
69.
C. H. K.
Williamson
, “
The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake
,”
J. Fluid Mech.
243
,
393
441
(
1992
).
70.
J.
Wu
,
J.
Sheridan
,
K.
Hourigan
, and
J.
Soria
, “
Shear layer vortices and longitudinal vortices in the near wake of a circular cylinder
,”
Exp. Therm. Fluid Sci.
12
,
169
174
(
1996
).
71.
T.
Wei
and
C. R.
Smith
, “
Secondary vortices in the wake of circular cylinders
,”
J. Fluid Mech.
169
,
513
533
(
1986
).
72.
C. H. K.
Williamson
,
J.
Wu
, and
J.
Sheridan
, “
Scaling of streamwise vortices in wakes
,”
Phys. Fluids
7
,
2307
2309
(
1995
).
73.
J.
Soria
, “
An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique
,”
Exp. Therm. Fluid Sci.
12
,
221
233
(
1996
).
74.
J.
Wu
,
J.
Sheridan
,
M. C.
Welsh
, and
K.
Hourigan
, “
Three-dimensional vortex structures in a cylinder wake
,”
J. Fluid Mech.
312
,
201
222
(
1996
).
75.
A.
Prasad
and
C. H.
Williamson
, “
Three-dimensional effects in turbulent bluff body wakes
,”
Exp. Therm. Fluid Sci.
14
,
9
16
(
1997
).
76.
M.
König
,
H.
Eisenlohr
, and
H.
Eckelmann
, “
The fine structure in the Strouhal–Reynolds number relationship of the laminar wake of a circular cylinder
,”
Phys. Fluids A
2
,
1607
1614
(
1990
).
77.
D. R.
Williams
,
H.
Mansy
, and
A.
Abouel‐Fotouh
, “
Three‐dimensional subharmonic waves during transition in the near‐wake region of a cylinder
,”
Phys. Fluids
8
,
1476
1485
(
1996
).
78.
C. H. K.
Williamson
,
Three-Dimensional Wake Transition
(
Springer
,
Dordrecht
,
1996
).
79.
A.
Roshko
,
On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies
(
NACA
,
1954
).
80.
D.
Barkley
and
R. D.
Henderson
, “
Three-dimensional Floquet stability analysis of the wake of a circular cylinder
,”
J. Fluid Mech.
322
,
215
241
(
1996
).
81.
H. M.
Blackburn
and
J. M.
Lopez
, “
On three-dimensional quasiperiodic Floquet instabilities of two-dimensional bluff body wakes
,”
Phys. Fluids
15
,
L57
L60
(
2003
).
82.
H. M.
Blackburn
,
F.
Marques
, and
J. M.
Lopez
, “
Symmetry breaking of two-dimensional time-periodic wakes
,”
J. Fluid Mech.
522
,
395
411
(
2005
).
83.
J.
Sung
and
J. Y.
Yoo
, “
Near-wake vortex motions behind a circular cylinder at low Reynolds number
,”
J. Fluids Struct.
17
,
261
274
(
2003
).
84.
F.
Scarano
and
C.
Poelma
, “
Three-dimensional vorticity patterns of cylinder wakes
,”
Exp. Fluids
47
,
69
(
2009
).
85.
S.
Rajagopalan
and
R. A.
Antonia
, “
Flow around a circular cylinder—Structure of the near wake shear layer
,”
Exp. Fluids
38
,
393
402
(
2005
).
86.
D.
Gkiolas
,
P.
Kapiris
, and
D.
Mathioulakis
, “
Experimental study of the near wake of a circular cylinder and its detached shear layers
,”
Exp. Therm. Fluid Sci.
113
,
110040
(
2020
).
87.
M. F.
Unal
and
D.
Rockwell
, “
The role of shear layer stability in vortex shedding from cylinders
,”
Phys. Fluids
27
,
2598
2599
(
1984
).
88.
M. F.
Unal
and
D.
Rockwell
, “
On vortex formation from a cylinder. Part 1. The initial instability
,”
J. Fluid Mech.
190
,
491
512
(
1988
).
89.
C.
Chyu
and
D.
Rockwell
, “
Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder
,”
J. Fluid Mech.
320
,
117
137
(
1996
).
90.
J. C.
Lin
,
P.
Vorobieff
, and
D.
Rockwell
, “
Three-dimensional patterns of streamwise vorticity in the turbulent near-wake of a cylinder
,”
J. Fluids Struct.
9
,
231
234
(
1995
).
91.
J. C.
Lin
,
P.
Vorobieff
, and
D.
Rockwell
, “
Space–time imaging of a turbulent near‐wake by high‐image‐density particle image cinematography
,”
Phys. Fluids
8
,
555
564
(
1996
).
92.
M. P.
Rockwood
,
K.
Taira
, and
M. A.
Green
, “
Detecting vortex formation and shedding in cylinder wakes using Lagrangian coherent structures
,”
AIAA J.
55
,
15
23
(
2017
).
93.
M.
Khor
,
J.
Sheridan
,
M. C.
Thompson
, and
K.
Hourigan
, “
Global frequency selection in the observed time-mean wakes of circular cylinders
,”
J. Fluid Mech.
601
,
425
441
(
2008
).
94.
I.
Khabbouchi
,
H.
Fellouah
,
M.
Ferchichi
, and
M. S.
Guellouz
, “
Effects of free-stream turbulence and Reynolds number on the separated shear layer from a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
135
,
46
56
(
2014
).
95.
H. M.
Blackburn
and
W. H.
Melbourne
, “
The effect of free-stream turbulence on sectional lift forces on a circular cylinder
,”
J. Fluid Mech.
306
,
267
292
(
1996
).
96.
H.
Nishimura
and
Y.
Taniike
, “
Aerodynamic characteristics of fluctuating forces on a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
89
,
713
723
(
2001
).
97.
R.
Maryami
,
S. A. S.
Ali
,
M.
Azarpeyvand
, and
A.
Afshari
, “
Turbulent flow interaction with a circular cylinder
,”
Phys. Fluids
32
,
015105
(
2020
).
98.
M.
Brede
, “
Measurement of turbulence production in the cylinder separated shear-layer using event-triggered laser-Doppler anemometry
,”
Exp. Fluids
36
,
860
866
(
2004
).
99.
H.
Djeridi
,
M.
Braza
,
R.
Perrin
,
G.
Harran
,
E.
Cid
, and
S.
Cazin
, “
Near-wake turbulence properties around a circular cylinder at high Reynolds number
,”
Flow Turbul. Combust.
71
,
19
34
(
2003
).
100.
C.
Norberg
, “LDV-measurements in the near wake of a circular cylinder,” ASME Paper No. FEDSM98-521, 1998.
101.
M.
Braza
,
R.
Perrin
, and
Y.
Hoarau
, “
Turbulence properties in the cylinder wake at high Reynolds numbers
,”
J. Fluids Struct.
22
,
757
771
(
2006
).
102.
T.
Zhou
,
S. F. M.
Razali
,
Y.
Zhou
,
L. P.
Chua
, and
L.
Cheng
, “
Dependence of the wake on inclination of a stationary cylinder
,”
Exp. Fluids
46
,
1125
1138
(
2009
).
103.
A.
Kozakiewicz
,
J.
Fredsee
, and
B. M.
Sumer
,
Forces on Pipelines in Oblique Attack: Steady Current and Waves
(
International Society of Offshore and Polar Engineers
,
1995
).
104.
L.
Najafi
,
E.
Firat
, and
H.
Akilli
, “
Time-averaged near-wake of a yawed cylinder
,”
Ocean Eng.
113
,
335
349
(
2016
).
105.
G.
Schewe
, “
On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers
,”
J. Fluid Mech.
133
,
265
285
(
1983
).
106.
G.
Chopra
and
S.
Mittal
, “
The intermittent nature of the laminar separation bubble on a cylinder in uniform flow
,”
Comput. Fluids
142
,
118
127
(
2017
).
107.
J. J.
Miau
,
C. H.
Fang
,
M. C.
Chen
,
C. T.
Wang
, and
Y. H.
Lai
, “
Discrete transition of flow over a circular cylinder at precritical Reynolds numbers
,”
AIAA J.
52
,
2576
2586
(
2014
).
108.
Y.
Qiu
,
Y.
Sun
,
Y.
Wu
, and
Y.
Tamura
, “
Analyzing the fluctuating pressures acting on a circular cylinder using stochastic decomposition
,”
J. Fluids Struct.
50
,
512
527
(
2014
).
109.
M.
Miozzi
,
A.
Capone
,
F. D.
Felice
,
C.
Klein
, and
T.
Liu
, “
Global and local skin friction diagnostics from TSP surface patterns on an underwater cylinder in crossflow
,”
Phys. Fluids
28
,
124101
(
2016
).
110.
A.
Capone
,
C.
Klein
,
F. D.
Felice
, and
M.
Miozzi
, “
Phenomenology of a flow around a circular cylinder at sub-critical and critical Reynolds numbers
,”
Phys. Fluids
28
,
074101
(
2016
).
111.
Y.-J.
Lin
,
J.-J.
Miau
,
J.-K.
Tu
, and
H.-W.
Tsai
, “
Nonstationary, three-dimensional aspects of flow around circular cylinder at critical Reynolds numbers
,”
AIAA J.
49
,
1857
1870
(
2011
).
112.
D. A.
Lyn
,
S.
Einav
,
W.
Rodi
, and
J.-H.
Park
, “
A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder
,”
J. Fluid Mech.
304
,
285
319
(
1995
).
113.
D. F. G.
Durão
,
M. V.
Heitor
, and
J. C. F.
Pereira
, “
Measurements of turbulent and periodic flows around a square cross-section cylinder
,”
Exp. Fluids
6
,
298
304
(
1988
).
114.
S. C.
Luo
,
Y. T.
Chew
, and
Y. T.
Ng
, “
Characteristics of square cylinder wake transition flows
,”
Phys. Fluids
15
,
2549
2559
(
2003
).
115.
A.
Dobre
and
H.
Hangan
, “
Investigation of the three-dimensional intermediate wake topology for a square cylinder at high Reynolds number
,”
Exp. Fluids
37
,
518
530
(
2004
).
116.
J.
Yu
,
L.-L.
Shi
,
W.-Z.
Wang
, and
Y.-Z.
Liu
, “
Conditional averaging of TR-PIV measurements of wake behind square cylinder using an improved cross-correlation approach
,”
J. Hydrodyn.
22
,
29
34
(
2010
).
117.
M.
Minguez
,
C.
Brun
,
R.
Pasquetti
, and
E.
Serre
, “
Experimental and high-order LES analysis of the flow in near-wall region of a square cylinder
,”
Int. J. Heat Fluid Flow
32
,
558
566
(
2011
).
118.
C. H. K.
Williamson
, “
Three-dimensional wake transition
,”
J. Fluid Mech.
328
,
345
407
(
1996
).
119.
J.
Robichaux
,
S.
Balachandar
, and
S. P.
Vanka
, “
Three-dimensional Floquet instability of the wake of square cylinder
,”
Phys. Fluids
11
,
560
578
(
1999
).
120.
G. J.
Sheard
,
M. J.
Fitzgerald
, and
K.
Ryan
, “
Cylinders with square cross-section: Wake instabilities with incidence angle variation
,”
J. Fluid Mech.
630
,
43
69
(
2009
).
121.
D.-H.
Yoon
,
K.-S.
Yang
, and
C.-B.
Choi
, “
Flow past a square cylinder with an angle of incidence
,”
Phys. Fluids
22
,
043603
(
2010
).
122.
X. H.
Tong
,
S. C.
Luo
, and
B. C.
Khoo
, “
Transition phenomena in the wake of an inclined square cylinder
,”
J. Fluids Struct.
24
,
994
1005
(
2008
).
123.
A.
Saha
,
K.
Muralidhar
, and
G.
Biswas
, “
Experimental study of flow past a square cylinder at high Reynolds numbers
,”
Exp. Fluids
29
,
553
563
(
2000
).
124.
G.
Wang
,
Large Eddy Simulations of Bluff-Body Wakes on Parallel Computers
(
University of Illinois at Urbana-Champaign
,
1996
).
125.
D.
Kurtulus
,
F.
Scarano
, and
L.
David
, “
Unsteady aerodynamic forces estimation on a square cylinder by TR-PIV
,”
Exp. Fluids
42
,
185
196
(
2007
).
126.
M. S.
Bloor
, “
The transition to turbulence in the wake of a circular cylinder
,”
J. Fluid Mech.
19
,
290
304
(
1964
).
127.
A.
Prasad
and
C. H.
Williamson
, “
The instability of the shear layer separating from a bluff body
,”
J. Fluid Mech.
333
,
375
402
(
1997
).
128.
D. C.
Lander
,
D. M.
Moore
,
C. W.
Letchford
, and
M.
Amitay
, “
Scaling of square-prism shear layers
,”
J. Fluid Mech.
849
,
1096
1119
(
2018
).
129.
C.
Zhao
,
H.
Wang
,
L.
Zeng
,
M. M.
Alam
, and
X.
Zhao
, “
Effects of oncoming flow turbulence on the near wake and forces of a 3D square cylinder
,”
J. Wind Eng. Ind. Aerodyn.
214
,
104674
(
2021
).
130.
S.
Dutta
,
P. K.
Panigrahi
, and
K.
Muralidhar
, “
Experimental investigation of flow past a square cylinder at an angle of incidence
,”
J. Eng. Mech.
134
,
788
803
(
2008
).
131.
B. W.
van Oudheusden
,
F.
Scarano
,
N. P.
van Hinsberg
, and
E. W. M.
Roosenboom
, “
Quantitative visualization of the flow around a square-section cylinder at incidence
,”
J. Wind Eng. Ind. Aerodyn.
96
,
913
922
(
2008
).
132.
R. F.
Huang
,
B. H.
Lin
, and
S. C.
Yen
, “
Time-averaged topological flow patterns and their influence on vortex shedding of a square cylinder in crossflow at incidence
,”
J. Fluids Struct.
26
,
406
429
(
2010
).
133.
S.
Dutta
,
K.
Muralidhar
, and
P.
Panigrahi
, “
Influence of the orientation of a square cylinder on the wake properties
,”
Exp. Fluids
34
,
16
23
(
2003
).
134.
B. W. v
Oudheusden
,
F.
Scarano
,
N. P. v
Hinsberg
, and
D. W.
Watt
, “
Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence
,”
Exp. Fluids
39
,
86
98
(
2005
).
135.
S. C.
Yen
and
C. W.
Yang
, “
Flow patterns and vortex shedding behavior behind a square cylinder
,”
J. Wind Eng. Ind. Aerodyn.
99
,
868
878
(
2011
).
136.
X.
Lou
,
T.
Zhou
,
Y.
Zhou
,
H.
Wang
, and
L.
Cheng
, “
Experimental investigation on wake characteristics behind a yawed square cylinder
,”
J. Fluids Struct.
61
,
274
294
(
2016
).
137.
L.
Carassale
,
A.
Freda
, and
M.
Marrè-Brunenghi
, “
Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners
,”
J. Fluids Struct.
44
,
195
204
(
2014
).
138.
N. P.
van Hinsberg
,
G.
Schewe
, and
M.
Jacobs
, “
Experiments on the aerodynamic behaviour of square cylinders with rounded corners at Reynolds numbers up to 12 million
,”
J. Fluids Struct.
74
,
214
233
(
2017
).
139.
N. P.
van Hinsberg
,
G.
Schewe
, and
M.
Jacobs
, “
Experimental investigation on the combined effects of surface roughness and corner radius for square cylinders at high Reynolds numbers up to 107
,”
J. Wind Eng. Ind. Aerodyn.
173
,
14
27
(
2018
).
140.
J. C.
Hu
and
Y.
Zhou
, “
Aerodynamic characteristics of asymmetric bluff bodies
,”
J. Fluids Eng.
131
,
011206
(
2008
).
141.
Z. J.
Taylor
,
G. A.
Kopp
, and
R.
Gurka
, “
Distribution of spanwise enstrophy in the near wake of three symmetric elongated bluff bodies at high Reynolds number
,”
Phys. Fluids
25
,
055103
(
2013
).
142.
S.
Nakagawa
,
K.
Nitta
, and
M.
Senda
, “
An experimental study on unsteady turbulent near wake of a rectangular cylinder in channel flow
,”
Exp. Fluids
27
,
284
294
(
1999
).
143.
E.
Deri
,
M.
Braza
,
E.
Cid
,
S.
Cazin
,
D.
Michaelis
, and
C.
Degouet
, “
Investigation of the three-dimensional turbulent near-wake structure past a flat plate by tomographic PIV at high Reynolds number
,”
J. Fluids Struct.
47
,
21
30
(
2014
).
144.
D. M.
Moore
,
C. W.
Letchford
, and
M.
Amitay
, “
Energetic scales in a bluff body shear layer
,”
J. Fluid Mech.
875
,
543
575
(
2019
).
145.
M.
Gu
,
X.
Wang
, and
Y.
Quan
, “
Wind tunnel test study on effects of chamfered corners on the aerodynamic characteristics of 2D rectangular prisms
,”
J. Wind Eng. Ind. Aerodyn.
204
,
104305
(
2020
).
146.
Y.-Z.
Xu
,
L.-H.
Feng
, and
J.-J.
Wang
, “
Experimental investigation on the flow over normal flat plates with various corner shapes
,”
J. Turbul.
16
,
607
616
(
2015
).
147.
Z. J.
Taylor
,
E.
Palombi
,
R.
Gurka
, and
G. A.
Kopp
, “
Features of the turbulent flow around symmetric elongated bluff bodies
,”
J. Fluids Struct.
27
,
250
265
(
2011
).
148.
A.
Naghib-Lahouti
,
P.
Lavoie
, and
H.
Hangan
, “
Wake instabilities of a blunt trailing edge profiled body at intermediate Reynolds numbers
,”
Exp. Fluids
55
,
1779
(
2014
).
149.
K.
Ryan
,
M. C.
Thompson
, and
K.
Hourigan
, “
Three-dimensional transition in the wake of bluff elongated cylinders
,”
J. Fluid Mech.
538
,
1
29
(
2005
).
150.
Z. R.
Shu
and
Q. S.
Li
, “
An experimental investigation of surface pressures in separated and reattaching flows: Effects of freestream turbulence and leading edge geometry
,”
J. Wind Eng. Ind. Aerodyn.
165
,
58
66
(
2017
).
151.
A.
Naghib-Lahouti
,
L. S.
Doddipatla
, and
H.
Hangan
, “
Secondary wake instabilities of a blunt trailing edge profiled body as a basis for flow control
,”
Exp. Fluids
52
,
1547
1566
(
2012
).
152.
S. J.
Wu
,
J. J.
Miau
,
C. C.
Hu
, and
J. H.
Chou
, “
On low-frequency modulations and three-dimensionality in vortex shedding behind a normal plate
,”
J. Fluid Mech.
526
,
117
146
(
2005
).
153.
N.
Agrwal
,
S.
Dutta
, and
B. K.
Gandhi
, “
Experimental investigation of flow field behind triangular prisms at intermediate Reynolds number with different apex angles
,”
Exp. Therm. Fluid Sci.
72
,
97
111
(
2016
).
154.
Z. Y.
Ng
,
T.
Vo
, and
G. J.
Sheard
, “
Stability of the wakes of cylinders with triangular cross-sections
,”
J. Fluid Mech.
844
,
721
745
(
2018
).
155.
L.
Sun
,
Y.
Huang
,
X.
Wang
,
X.
Feng
, and
W.
Xiao
, “
High frequency characteristics of the near wake and vortex past a triangular cylinder
,”
J. Fluids Eng.
143
,
031204
(
2020
).
156.
Q.
Wang
,
L.
Gan
,
S.
Xu
, and
Y.
Zhou
, “
Vortex evolution in the near wake behind polygonal cylinders
,”
Exp. Therm. Fluid Sci.
110
,
109940
(
2020
).
157.
S. J.
Xu
,
W. G.
Zhang
,
L.
Gan
,
M. G.
Li
, and
Y.
Zhou
, “
Experimental study of flow around polygonal cylinders
,”
J. Fluid Mech.
812
,
251
278
(
2017
).
158.
Q.-Y.
Wang
,
S.-J.
Xu
,
L.
Gan
,
W.-G.
Zhang
, and
Y.
Zhou
, “
Scaling of the time-mean characteristics in the polygonal cylinder near-wake
,”
Exp. Fluids
60
,
181
(
2019
).
159.
I. P.
Castro
and
L.
Watson
, “
Vortex shedding from tapered, triangular plates: Taper and aspect ratio effects
,”
Exp. Fluids
37
,
159
167
(
2004
).
160.
J.
Visscher
,
B.
Pettersen
, and
H. I.
Andersson
, “
Experimental study on the wake behind tapered circular cylinders
,”
J. Fluids Struct.
27
,
1228
1237
(
2011
).
161.
W.
Zhang
,
Daichin
, and
S. J.
Lee
, “
PIV measurements of the near-wake behind a sinusoidal cylinder
,”
Exp. Fluids
38
,
824
832
(
2005
).
162.
A.
Ahmed
and
B.
Bays‐Muchmore
, “
Transverse flow over a wavy cylinder
,”
Phys. Fluids A
4
,
1959
1967
(
1992
).
163.
A.
Ahmed
,
M. J.
Khan
, and
B.
Bays-Muchmore
, “
Experimental investigation of a three-dimensional bluff-body wake
,”
AIAA J.
31
,
559
563
(
1993
).
164.
F. H.
Wang
,
G. D.
Jiang
, and
K.
Lam
, “
Flow patterns of cross-flow around a varicose cylinder
,”
J. Visualization
8
,
49
56
(
2005
).
165.
K.
Lam
,
F. H.
Wang
, and
R. M. C.
So
, “
Three-dimensional nature of vortices in the near wake of a wavy cylinder
,”
J. Fluids Struct.
19
,
815
833
(
2004
).
166.
K.
Lam
and
Y. F.
Lin
, “
Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers
,”
J. Fluid Mech.
620
,
195
220
(
2009
).
167.
F. H.
Wang
,
G. D.
Jiang
, and
K.
Lam
, “
A study of velocity fields in the near wake of a wavy (varicose) cylinder by LDA
,”
Flow Meas. Instrum.
15
,
105
110
(
2004
).
168.
S.-J.
Lee
and
A.-T.
Nguyen
, “
Experimental investigation on wake behind a wavy cylinder having sinusoidal cross-sectional area variation
,”
Fluid Dyn. Res.
39
,
292
304
(
2007
).
169.
T.
New
,
S.
Shi
, and
Y.
Liu
, “
Cylinder-wall interference effects on finite-length wavy cylinders at subcritical Reynolds number flows
,”
Exp. Fluids
54
,
1601
(
2013
).
170.
T. H.
New
,
S.
Shi
, and
Y.
Liu
, “
On the flow behaviour of confined finite-length wavy cylinders
,”
J. Fluids Struct.
54
,
281
296
(
2015
).
171.
L. S.
Doddipatla
,
H.
Hangan
,
V.
Durgesh
, and
J.
Naughton
, “
Wake dynamics resulting from trailing-edge spanwise sinusoidal perturbation
,”
AIAA J.
55
,
1833
1851
(
2017
).
172.
H.
Bai
,
B.
Zang
, and
T.
New
, “
The near wake of a sinusoidal wavy cylinder with a large spanwise wavelength using time-resolved particle image velocimetry
,”
Exp. Fluids
60
,
15
(
2019
).
173.
S.
Chu
,
X.
Chao
,
H.
Wang
,
Y.
Fan
, and
Y.
Zhigang
, “
Three-dimensional spectral proper orthogonal decomposition analyses of the turbulent flow around a seal-vibrissa-shaped cylinder
,”
Phys. Fluids
33
,
025106
(
2021
).
174.
W.
Hanke
,
M.
Witte
,
L.
Miersch
,
M.
Brede
,
J.
Oeffner
,
M.
Michael
,
F.
Hanke
,
A.
Leder
, and
G.
Dehnhardt
, “
Harbor seal vibrissa morphology suppresses vortex-induced vibrations
,”
J. Exp. Biol.
213
,
2665
2672
(
2010
).
175.
S.
Wang
and
Y.
Liu
, “
Wake dynamics behind a seal-vibrissa-shaped cylinder: A comparative study by time-resolved particle velocimetry measurements
,”
Exp. Fluids
57
,
32
(
2016
).
176.
W.-L.
Chen
,
X.-W.
Min
,
D.-L.
Gao
,
A.-X.
Guo
, and
H.
Li
, “
Experimental investigation of aerodynamic forces and flow structures of bionic cylinders based on harbor seal vibrissa
,”
Exp. Therm. Fluid Sci.
99
,
169
180
(
2018
).
177.
S.
Sayeed-Bin-Asad
,
T. S.
Lundström
, and
A. G.
Andersson
, “
Study the flow behind a semi-circular step cylinder (laser doppler velocimetry (LDV) and computational fluid dynamics (CFD))
,”
Energies
10
,
332
(
2017
).
178.
C.
Morton
, “
Three-dimensional wake development and structural loading on dual step cylinders in cross-flow
,” Ph.D. dissertation (
University of Waterloo
,
2014
).
179.
W.
Dunn
and
S.
Tavoularis
, “
Experimental studies of vortices shed from cylinders with a step-change in diameter
,”
J. Fluid Mech.
555
,
409
(
2006
).
180.
N. W. M.
Ko
and
A. S. K.
Chan
, “
In the intermixing region behind circular cylinders with stepwise change of the diameter
,”
Exp. Fluids
9
,
213
221
(
1990
).
181.
C. G.
Lewis
and
M.
Gharib
, “
An exploration of the wake three dimensionalities caused by a local discontinuity in cylinder diameter
,”
Phys. Fluids A
4
,
104
117
(
1992
).
182.
C.
Morton
and
S.
Yarusevych
, “
Vortex dynamics in the turbulent wake of a single step cylinder
,”
J. Fluids Eng.
136
,
031204
(
2014
).
183.
C.
Morton
and
S.
Yarusevych
, “
Vortex shedding in the wake of a step cylinder
,”
Phys. Fluids
22
,
083602
(
2010
).
184.
C.
Morton
and
S.
Yarusevych
, “
An experimental investigation of flow past a dual step cylinder
,”
Exp. Fluids
52
,
69
83
(
2012
).
185.
C.
Morton
and
S.
Yarusevych
, “
On vortex shedding from low aspect ratio dual step cylinders
,”
J. Fluids Struct.
44
,
251
269
(
2014
).
186.
C.
Morton
,
S.
Yarusevych
, and
F.
Scarano
, “
A tomographic particle image velocimetry investigation of the flow development over dual step cylinders
,”
Phys. Fluids
28
,
025104
(
2016
).
187.
C.
Morton
and
S.
Yarusevych
, “
Vortex shedding from cylinders with two step discontinuities in diameter
,”
J. Fluid Mech.
902
,
A29
(
2020
).
188.
M. C.
Wolochuk
,
M. W.
Plesniak
, and
J. E.
Braun
, “
The effects of turbulence and unsteadiness on vortex shedding from sharp-edged bluff bodies
,”
J. Fluids Eng.
118
,
18
25
(
1996
).
189.
D.
Telionis
,
M.
Gundappa
, and
T.
Diller
, “
On the organization of flow and heat transfer in the near wake of a circular cylinder in steady and pulsed flow
,”
J. Fluids Eng.
114
,
348
355
(
1992
).
190.
C.
Barbi
,
D. P.
Favier
,
C. A.
Maresca
, and
D. P.
Telionis
, “
Vortex shedding and lock-on of a circular cylinder in oscillatory flow
,”
J. Fluid Mech.
170
,
527
544
(
1986
).
191.
K.
Al-Asmi
and
I. P.
Castro
, “
Vortex shedding in oscillatory flow: Geometrical effects
,”
Flow Meas. Instrum.
3
,
187
202
(
1992
).
192.
B. J.
Armstrong
,
F. H.
Barnes
, and
I.
Grant
, “
The effect of a perturbation on the flow over a bluff cylinder
,”
Phys. Fluids
29
,
2095
2102
(
1986
).
193.
C. C.
Hu
,
J. J.
Miau
, and
J. H.
Chou
, “
Instantaneous vortex-shedding behaviour in periodically varying flow
,”
Proc. R. Soc. Ser. A
458
,
911
932
(
2002
).
194.
E.
Konstantinidis
,
S.
Balabani
, and
M.
Yianneskis
, “
The effect of flow perturbations on the near wake characteristics of a circular cylinder
,”
J. Fluids Struct.
18
,
367
386
(
2003
).
195.
E.
Konstantinidis
,
S.
Balabani
, and
M.
Yianneskis
, “
The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations
,”
J. Fluid Mech.
543
,
45
55
(
2005
).
196.
E.
Konstantinidis
and
S.
Balabani
, “
Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations
,”
J. Fluids Struct.
23
,
1047
1063
(
2007
).
197.
E.
Konstantinidis
,
S.
Balabani
, and
M.
Yianneskis
, “
Bimodal vortex shedding in a perturbed cylinder wake
,”
Phys. Fluids
19
,
011701
(
2007
).
198.
E.
Konstantinidis
and
S.
Balabani
, “
Flow structure in the locked-on wake of a circular cylinder in pulsating flow: Effect of forcing amplitude
,”
Int. J. Heat Fluid Flow
29
,
1567
1576
(
2008
).
199.
A.
Jarża
and
M.
Podolski
, “
Turbulence structure in the vortex formation region behind a circular cylinder in lock-on conditions
,”
Eur. J. Mech. B
23
,
535
550
(
2004
).
200.
W.
Kim
,
J.
Sung
,
J. Y.
Yoo
, and
M. H.
Lee
, “
High-definition PIV analysis on vortex shedding in the cylinder wake
,”
J. Visualization
7
,
17
24
(
2004
).
201.
N. I.
Mikheev
,
V. M.
Molochnikov
,
A. N.
Mikheev
, and
O. A.
Dushina
, “
Hydrodynamics and heat transfer of pulsating flow around a cylinder
,”
Int. J. Heat Mass Transfer
109
,
254
265
(
2017
).
202.
M.
Li
,
Q.
Li
, and
H.
Shi
, “
Aerodynamic pressures on a 5:1 rectangular cylinder in sinusoidal streamwise oscillatory flows with non-zero mean velocities
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104440
(
2021
).
203.
B.
Wu
,
S.
Li
,
L.
Zhang
, and
K.
Li
, “
Experimental determination of the two-dimensional aerodynamic admittances of a 5:1 rectangular cylinder in streamwise sinusoidal flows
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104525
(
2021
).
204.
S.
Taneda
and
H.
Honji
, “
Unsteady flow past a flat plate normal to the direction of motion
,”
J. Phys. Soc. Jpn.
30
,
262
272
(
1971
).
205.
T.
Sarpkaya
and
C. J.
Ihrig
, “
Impulsively started steady flow about rectangular prisms: Experiments and discrete vortex analysis
,”
J. Fluids Eng.
108
,
47
54
(
1986
).
206.
F. T.
Lombardo
, “
Engineering analysis of a full-scale high-resolution tornado wind speed record
,”
J. Struct. Eng.
144
,
04017212
(
2018
).
207.
T.
Lee
and
R.
Budwig
, “
The onset and development of circular-cylinder vortex wakes in uniformly accelerating flows
,”
J. Fluid Mech.
232
,
611
627
(
1991
).
208.
T.
Sarpkaya
, “
Nonimpulsively started steady flow about a circular cylinder
,”
AIAA J.
29
,
1283
1289
(
1991
).
209.
R.
Bouard
and
M.
Coutanceau
, “
The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 10,000
,”
J. Fluid Mech.
101
,
583
607
(
1980
).
210.
C. C.
Chu
and
Y. Y.
Liao
, “
A quantitative study of the flow around an impulsively started circular cylinder
,”
Exp. Fluids
13
,
137
146
(
1992
).
211.
C.
Lin
,
S.-C.
Hsieh
,
W.-J.
Lin
, and
R. V.
Raikar
, “
Characteristics of recirculation zone structure behind an impulsively started circular cylinder
,”
J. Eng. Mech.
138
,
184
198
(
2012
).
212.
F.
Finaish
, “
On vortex structures and processes over bluff bodies in impulsive flow
,”
Exp. Fluids
11
,
262
267
(
1991
).
213.
N.
Tonui
and
D.
Sumner
, “
Flow around impulsively started square prisms
,”
J. Fluids Struct.
27
,
62
75
(
2011
).
214.
M.
Tatsuno
and
S.
Taneda
, “
Visualization of the unsteady flow past cylinders and plates decelerated from steady speed
,”
J. Phys. Soc. Jpn.
31
,
1266
1274
(
1971
).
215.
Y.
Lee
,
J.
Rho
,
K. H.
Kim
, and
D.-H.
Lee
, “
Fundamental studies on free stream acceleration effect on drag force in bluff bodies
,”
J. Mech. Sci. Technol.
25
,
695
701
(
2011
).
216.
T.
Yang
and
M. S.
Mason
, “
Aerodynamic characteristics of rectangular cylinders in steady and accelerating wind flow
,”
J. Fluids Struct.
90
,
246
262
(
2019
).
217.
C. L.
Ford
and
P. M.
Winroth
, “
On the scaling and topology of confined bluff-body flows
,”
J. Fluid Mech.
876
,
1018
1040
(
2019
).
218.
B. F.
Feshalami
,
M. H.
Djavareshkian
,
M.
Yousefi
,
A. H.
Zaree
, and
A. A.
Mehraban
, “
Experimental investigation of flapping mechanism of the black-headed gull in forward flight
,”
Proc. Inst. Mech. Eng. Part G
233
,
4333
4349
(
2019
).
219.
M.
Bishop
and
S.
Yarusevych
, “
Mitigating blockage effects on flow over a circular cylinder in an adaptive-wall wind tunnel
,”
J. Fluids Eng.
133
,
081101
(
2011
).
220.
I.
Ross
and
A.
Altman
, “
Wind tunnel blockage corrections: Review and application to Savonius vertical-axis wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
99
,
523
538
(
2011
).
221.
F.
Rehimi
and
F.
Aloui
, “
Synchronized analysis of an unsteady laminar flow downstream of a circular cylinder centred between two parallel walls using PIV and mass transfer probes
,”
Exp. Fluids
51
,
1
22
(
2011
).
222.
I.
Guillén
,
C.
Treviño
, and
L.
Martínez-Suástegui
, “
Unsteady laminar mixed convection heat transfer from a horizontal isothermal cylinder in contra-flow: Buoyancy and wall proximity effects on the flow response and wake structure
,”
Exp. Therm. Fluid Sci.
52
,
30
46
(
2014
).
223.
B. F.
Feshalami
and
S.
He
, “
Suppression of vortex shedding behind a square cylinder confined in a diverging channel
,”
Ocean Eng.
235
,
109400
(
2021
).
224.
M.
Reyes
,
A.
Velazquez
,
E.
Martin
, and
J. R.
Arias
, “
Experimental study on the confined 3D laminar flow past a square prism with a high blockage ratio
,”
Int. J. Heat Fluid Flow
44
,
444
457
(
2013
).
225.
F.
Rehimi
,
F.
Aloui
,
S. B.
Nasrallah
,
L.
Doubliez
, and
J.
Legrand
, “
Experimental investigation of a confined flow downstream of a circular cylinder centred between two parallel walls
,”
J. Fluids Struct.
24
,
855
882
(
2008
).
226.
S.
Madhavan
,
Y. Y.
Al-Jahmany
,
P. D.
Minev
, and
K.
Nandakumar
, “
On the transition to 3D modes for channel flow past a square cylinder
,”
Can. J. Chem. Eng.
92
,
2122
2137
(
2014
).
227.
X.
Wang
,
J.
Chen
,
B.
Zhou
,
Y.
Li
, and
Q.
Xiang
, “
Experimental investigation of flow past a confined bluff body: Effects of body shape, blockage ratio and Reynolds number
,”
Ocean Eng.
220
,
108412
(
2021
).
228.
A.
Venugopal
,
A.
Agrawal
, and
S. V.
Prabhu
, “
Vortex dynamics of a trapezoidal bluff body placed inside a circular pipe
,”
J. Turbul.
19
,
1
24
(
2018
).
229.
V.
Arumuru
,
A.
Agrawal
, and
S. V.
Prabhu
, “
Experimental investigations on flow over a circular cylinder placed in a circular pipe
,”
Phys. Fluids
32
,
095122
(
2020
).
230.
C.
Lei
,
L.
Cheng
, and
K.
Kavanagh
, “
Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
80
,
263
286
(
1999
).
231.
M. J.
Ezadi Yazdi
and
A.
Bak Khoshnevis
, “
Wake-boundary layer interaction behind an elliptic cylinder at different Reynolds numbers
,”
J. Turbul.
19
,
529
552
(
2018
).
232.
S. J.
Price
,
D.
Sumner
,
J. G.
Smith
,
K.
Leong
, and
M. P.
PaÏDoussis
, “
Flow visualization around a circular cylinder neat to a plane wall
,”
J. Fluids Struct.
16
,
175
191
(
2002
).
233.
A. A.
Oner
,
M.
Salih Kirkgoz
, and
M.
Sami Akoz
, “
Interaction of a current with a circular cylinder near a rigid bed
,”
Ocean Eng.
35
,
1492
1504
(
2008
).
234.
I.
Khabbouchi
,
M. S.
Guellouz
, and
S.
Ben Nasrallah
, “
A study of the effect of the jet-like flow on the near wake behind a circular cylinder close to a plane wall
,”
Exp. Therm. Fluid Sci.
44
,
285
300
(
2013
).
235.
W.-J.
Lin
,
C.
Lin
,
S.-C.
Hsieh
, and
S.
Dey
, “
Flow characteristics around a circular cylinder placed horizontally above a plane boundary
,”
J. Eng. Mech.
135
,
697
716
(
2009
).
236.
F.
Yang
,
H.
An
, and
L.
Cheng
, “
Drag crisis of a circular cylinder near a plane boundary
,”
Ocean Eng.
154
,
133
142
(
2018
).
237.
P.
Ouro
,
V.
Muhawenimana
, and
C. A.
Wilson
, “
Asymmetric wake of a horizontal cylinder in close proximity to a solid boundary for Reynolds numbers in the subcritical turbulence regime
,”
Phys. Rev. Fluids
4
,
104604
(
2019
).
238.
J.
Zhou
,
X.
Qiu
,
J.
Li
, and
Y.
Liu
, “
The gap ratio effects on vortex evolution behind a circular cylinder placed near a wall
,”
Phys. Fluids
33
,
037112
(
2021
).
239.
R. J.
Martinuzzi
,
S. C. C.
Bailey
, and
G. A.
Kopp
, “
Influence of wall proximity on vortex shedding from a square cylinder
,”
Exp. Fluids
34
,
585
596
(
2003
).
240.
L. L.
Shi
,
Y. Z.
Liu
, and
H. J.
Sung
, “
On the wake with and without vortex shedding suppression behind a two-dimensional square cylinder in proximity to a plane wall
,”
J. Wind Eng. Ind. Aerodyn.
98
,
492
503
(
2010
).
241.
C.
He
,
Y.
Liu
,
D.
Peng
, and
S.
Yavuzkurt
, “
Measurement of flow structures and heat transfer behind a wall-proximity square rib using TSP, PIV and split-fiber film
,”
Exp. Fluids
57
,
165
(
2016
).
242.
S.
Malavasi
and
G.
Blois
, “
Wall effects on the flow structure around a rectangular cylinder
,”
Meccanica
47
,
805
815
(
2012
).
243.
P. K.
Panigrahi
, “
PIV investigation of flow behind surface mounted detached square cylinder
,”
J. Fluids Eng.
131
,
011202
(
2008
).
244.
F.
Yang
,
Z.
Zhou
,
G.
Tang
, and
L.
Lu
, “
Steady flow around a square cylinder near a plane boundary
,”
Ocean Eng.
222
,
108599
(
2021
).
245.
A.
Cigada
,
S.
Malavasi
, and
M.
Vanali
, “
Effects of an asymmetrical confined flow on a rectangular cylinder
,”
J. Fluids Struct.
22
,
213
227
(
2006
).
246.
S.
Malavasi
and
E.
Zappa
, “
Fluid-dynamic forces and wake frequencies on a tilted rectangular cylinder near a solid wall
,”
Meccanica
44
,
91
101
(
2009
).
247.
J. H.
Choi
and
S. J.
Lee
, “
Flow characteristics around an inclined elliptic cylinder in a turbulent boundary layer
,”
J. Fluids Struct.
15
,
1123
1135
(
2001
).
248.
E.
Esmaeilifar
,
M.
Hassan Djavareshkian
,
B. F.
Feshalami
, and
A.
Esmaeili
, “
Hydrodynamic simulation of an oscillating hydrofoil near free surface in critical unsteady parameter
,”
Ocean Eng.
141
,
227
236
(
2017
).
249.
D.
Mouazé
and
M.
Bélorgey
, “
Flow visualisation around a horizontal cylinder near a plane wall and subject to waves
,”
Appl. Ocean Res.
25
,
195
211
(
2003
).
250.
P.
Reichl
,
K.
Hourigan
, and
M. C.
Thompson
, “
Flow past a cylinder close to a free surface
,”
J. Fluid Mech.
533
,
269
296
(
2005
).
251.
V.
Venugopal
,
K. S.
Varyani
, and
P. C.
Westlake
, “
Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents
,”
Proc. Inst. Mech. Eng. Part M
223
,
121
136
(
2009
).
252.
J.
Bai
,
N.
Ma
, and
X.
Gu
, “
Study of interaction between wave-current and the horizontal cylinder located near the free surface
,”
Appl. Ocean Res.
67
,
44
58
(
2017
).
253.
J.
Sheridan
,
J. C.
Lin
, and
D.
Rockwell
, “
Flow past a cylinder close to a free surface
,”
J. Fluid Mech.
330
,
1
30
(
1997
).
254.
H.
Ren
,
Y.
Xu
,
M.
Zhang
,
S.
Deng
,
S.
Li
,
S.
Fu
, and
H.
Sun
, “
Hydrodynamic forces on a partially submerged cylinder at high Reynolds number in a steady flow
,”
Appl. Ocean Res.
88
,
160
169
(
2019
).
255.
S. J.
Lee
, “
Near-wake flow structure of elliptic cylinders close to a free surface: Effect of cylinder aspect ratio
,”
Exp. Fluids
36
,
748
758
(
2004
).
256.
S. J.
Lee
and
Daichin
, “
Flow past a circular cylinder over a free surface: Interaction between the near wake and the free surface deformation
,”
J. Fluids Struct.
19
,
1049
1059
(
2004
).
257.
S.
Malavasi
and
A.
Guadagnini
, “
Interactions between a rectangular cylinder and a free-surface flow
,”
J. Fluids Struct.
23
,
1137
1148
(
2007
).
258.
E.-R.
Qi
,
G.-Y.
Li
,
W.
Li
,
J.
Wu
, and
X.
Zhang
, “
Study of vortex characteristics of the flow around a horizontal circular cylinder at various gap-ratios in the cross-flow
,”
J. Hydrodyn. Ser B
18
,
334
340
(
2006
).
259.
M.
Negri
,
F.
Cozzi
, and
S.
Malavasi
, “
Self-synchronized phase averaging of PIV measurements in the base region of a rectangular cylinder
,”
Meccanica
46
,
423
435
(
2011
).
260.
N. F.
Tumen Ozdil
and
H.
Akilli
, “
Investigation of flow structure around a horizontal cylinder at different elevations in shallow water
,”
Ocean Eng.
96
,
56
67
(
2015
).
261.
B.
Qin
,
P. F.
Salipante
,
S. D.
Hudson
, and
P. E.
Arratia
, “
Upstream vortex and elastic wave in the viscoelastic flow around a confined cylinder
,”
J. Fluid Mech.
864
,
R2
(
2019
).
262.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids: I. Identification and demarcation of flow regimes
,”
J. Non-Newtonian Fluid Mech.
110
,
143
176
(
2003
).
263.
D. F.
James
,
T.
Shiau
, and
P. M.
Aldridge
, “
Flow of a Boger fluid around an isolated cylinder
,”
J. Rheol.
60
,
1137
1149
(
2016
).
264.
V. M.
Ribeiro
,
P. M.
Coelho
,
F. T.
Pinho
, and
M. A.
Alves
, “
Viscoelastic fluid flow past a confined cylinder: Three-dimensional effects and stability
,”
Chem. Eng. Sci.
111
,
364
380
(
2014
).
265.
C.
Bergins
,
M.
Nowak
, and
M.
Urban
, “
The flow of a dilute cationic surfactant solution past a circular cylinder
,”
Exp. Fluids
30
,
410
417
(
2001
).
266.
O.
Cadot
, “
Partial roll-up of a viscoelastic Kármán street
,”
Eur. J. Mech. B
20
,
145
153
(
2001
).
267.
J. R.
Cressman
,
Q.
Bailey
, and
W. I.
Goldburg
, “
Modification of a vortex street by a polymer additive
,”
Phys. Fluids
13
,
867
871
(
2001
).
268.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids: II. Flow characteristics
,”
J. Non-Newtonian Fluid Mech.
110
,
177
193
(
2003
).
269.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids. III: Pressure measurements
,”
J. Non-Newtonian Fluid Mech.
121
,
55
68
(
2004
).
270.
C. J.
Pipe
and
P. A.
Monkewtiz
, “
Vortex shedding in flows of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
139
,
54
67
(
2006
).
You do not currently have access to this content.