Although geostrophically balanced mesoscale vortices and unbalanced small-scale turbulence have been well studied, the link between them is not entirely clear, especially in the vertical dimension. The inertia–gravity wave (IGW) spiral plays an important role in the energy and enstrophy cascades between the geostrophic vortex and the small-scale turbulence. Since the vertical velocity cannot be measured in practice, the slowly varying IGW spiral formula in a vortex is used to distinguish the direction of vertical velocity. The vertical deformation of the vortex with IGW spirals results in a vertical semi-circulating cycle of the energy cascades: the energy cascades forward from the geostrophic vortex scale to small scales in the IGW spiral at one depth, flows along the IGW spiral, and then inversely cascades to the geostrophic vortex scale at another depth. Some small-scale energy at one depth eventually reaches large scales at another depth, which can prevent some energy from falling into small-scale dissipation, allowing the geostrophic vortex to continue for months in the ocean. A vertical full-circulating cycle is formed by connecting every IGW spiral in different geostrophic vortices and jets, similar to the energy exchange in the capillaries of the human body. The vertical closed zero-flux line of enstrophy cascades caused by the IGW spiral in a geostrophic vortex isolates the enstrophy at different scales to reduce the dissipation. Due to the IGW spiral, the energy and enstrophy spectra in the geostrophic vortex are −1 and 1 at small scales, respectively.

1.
A. N.
Kolmogorov
, “
Dissipation of energy in the locally isotropic turbulence
,”
Proc. R. Soc. Phys. Sci.
434
,
15
17
(
1991
).
2.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Proc. R. Soc. Phys. Sci.
434
,
9
13
(
1991
).
3.
A. N.
Kolmogorov
, “
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
,”
J. Fluid Mech.
13
,
82
(
1962
).
4.
A. M.
Obukhov
, “
Some specific features of atmospheric turbulence
,”
J. Fluid Mech.
13
,
77
(
1962
).
5.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
NY
,
1995
), p.
296
.
6.
G.
Taylor
, “
Observations and speculations on the nature of turbulent motion
,” in
Scientific Papers
, edited by
G. K.
Batchelor
(
Cambridge University Press
,
NY
,
1917
), Vol.
2
, p.
69
.
7.
J. G.
Charney
, “
Geostrophic turbulence
,”
J. Atmos. Sci.
28
,
1087
1095
(
1971
).
8.
R.
Salmon
, “
Two-layer quasi-geostrophic turbulence in a simple special case
,”
Geophys. Astrophys. Fluid Dyn.
10
,
25
52
(
1978
).
9.
R.
Salmon
, “
Baroclinic instability and geostrophic turbulence
,”
Geophys. Astrophys. Fluid Dyn.
15
,
167
211
(
1980
).
10.
L. L.
Fu
and
G. R.
Flierl
, “
Nonlinear energy and enstrophy transfers in a realistically stratified ocean
,”
Dyn. Atmos. Oceans
4
,
219
246
(
1980
).
11.
G.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
NY
,
2006
).
12.
P. B.
Rhinesl
, “
Waves and turbulence on a beta-plane
,”
J. Fluid Mech.
69
,
417
443
(
1975
).
13.
P. B.
Rhinesl
, “
Geostrophic turbulence
,”
Annu. Rev. Fluid Mech.
11
,
401
441
(
1979
).
14.
G.
Holloway
and
M. C.
Hendershott
, “
Stochastic closure for nonlinear Rossby waves
,”
J. Fluid Mech.
82
,
747
765
(
1977
).
15.
J.
Theiss
, “
Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence
,”
J. Phys. Oceanogr.
34
,
1663
1678
(
2004
).
16.
B.
Galperin
,
S.
Sukoriansky
,
N.
Dikovskaya
,
P.
Read
,
Y.
Yamazaki
, and
R.
Wordsworth
, “
Anisotropic turbulence and zonal jets in rotating flows with a β-effect
,”
Nonlinear Processes Geophys.
13
,
83
98
(
2006
).
17.
B.
Galperin
,
S.
Sukoriansky
, and
N.
Dikovskaya
, “
Geophysical flows with anisotropic turbulence and dispersive waves: Flows with a β-effect
,”
Ocean Dyn.
60
,
427
441
(
2010
).
18.
R. B.
Scott
and
F.
Wang
, “
Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry
,”
J. Phys. Oceanogr.
35
,
1650
1666
(
2005
).
19.
B.
Qiu
,
R. B.
Scott
, and
S.
Chen
, “
Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific subtropical countercurrent
,”
J. Phys. Oceanogr.
38
,
1515
1528
(
2008
).
20.
R.
Tulloch
,
J.
Marshall
,
C.
Hill
, and
K. S.
Smith
, “
Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean
,”
J. Phys. Oceanogr.
41
,
1057
1076
(
2011
).
21.
B. K.
Arbic
,
K. L.
Polzin
,
R. B.
Scott
,
J. G.
Richman
, and
J. F.
Shriver
, “
On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products
,”
J. Phys. Oceanogr.
43
,
283
300
(
2013
).
22.
C.
Wunsch
, “
The vertical partition of oceanic horizontal kinetic energy
,”
J. Phys. Oceanogr.
27
,
1770
1794
(
1997
).
23.
R. B.
Scott
and
B. K.
Arbic
, “
Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics
,”
J. Phys. Oceanogr.
37
,
673
688
(
2007
).
24.
I. M.
Held
,
R. T.
Pierrehumbert
,
S. T.
Garner
, and
K. L.
Swanson
, “
Surface quasi-geostrophic dynamics
,”
J. Fluid Mech.
282
,
1
20
(
1995
).
25.
X.
Capet
,
P.
Klein
,
B. L.
Hua
,
G.
Lapeyre
, and
J. C.
Mcwilliams
, “
Surface kinetic energy transfer in surface quasi-geostrophic flows
,”
J. Fluid Mech.
604
,
165
174
(
2008
).
26.
R.
Kraichnan
, “
Inertial ranges in two dimensional turbulence
,”
Phys. Fluids
10
,
1417
1423
(
1967
).
27.
C.
Leith
, “
Diffusion approximation for two dimensional turbulence
,”
Phys. Fluids
11
,
671
673
(
1968
).
28.
G.
Batchelor
, “
Computation of the energy spectrum in homogeneous, two dimensional turbulence
,”
Phys. Fluids
12
,
II-233
(
1969
).
29.
G.
Nastrom
,
K.
Gage
, and
W.
Jasperson
, “
Kinetic energy spectrum of largescale and mesoscale atmospheric processes
,”
Nature
310
,
36
38
(
1984
).
30.
E.
Gkioulekas
and
K.
Tung
, “
On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation
,”
Discrete Contin. Dyn. Syst. B
5
,
79
102
(
2005
).
31.
E.
Gkioulekas
and
K.
Tung
, “
On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence
,”
Discrete Contin. Dyn. Syst. B
5
,
103
124
(
2005
).
32.
J.
Cho
and
E.
Lindborg
, “
Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations
,”
J. Geophys. Res.
106
,
10223
10232
, (
2001
).
33.
Y.
Xu
and
L.-L.
Fu
, “
Global variability of the wavenumber spectrum of oceanic mesoscale turbulence
,”
J. Phys. Oceanogr.
41
,
802
809
(
2011
).
34.
Y.
Xu
and
L.-L.
Fu
, “
The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height
,”
J. Phys. Oceanogr.
42
,
2229
2233
(
2012
).
35.
C.
Garrett
and
W.
Munk
, “
Space-time scales of internal waves
,”
Geophys. Fluid Dyn.
3
,
225
264
(
1972
).
36.
R.
Ferrari
and
C.
Wunsch
, “
Ocean circulation kinetic energy: Reservoirs, sources, and sinks
,”
Annu. Rev. Fluid Mech.
41
,
253
282
(
2009
).
37.
C.
Wunsch
and
R.
Ferrar
, “
Vertical mixing, energy, and the general circulation of the oceans
,”
Annu. Rev. Fluid Mech.
36
,
281
314
(
2004
).
38.
Q.
Li
,
B.
Wang
,
X.
Chen
, and
J.-H.
Park
, “
Variability of nonlinear internal waves in the South China Sea affected by the Kuroshio and mesoscale eddies
,”
J. Geophys. Res.
121
,
2098
2118
, (
2016
).
39.
O.
Bühler
,
J.
Callies
, and
R.
Ferrari
, “
Wave-vortex decomposition of one-dimensional ship-track data
,”
J. Fluid Mech.
756
,
1007
1026
(
2014
).
40.
C. B.
Rocha
,
T. K.
Chereskin
,
S. T.
Gille
, and
D.
Menemenlis
, “
Mesoscale to submesoscale wavenumber spectra in drake passage
,”
J. Phys. Oceanogr.
46
,
601
620
(
2016
).
41.
B.
Qiu
,
T.
Nakano
,
S.
Chen
, and
P.
Klein
, “
Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean
,”
Nat. Commun.
8
,
14055
(
2017
).
42.
C.
Snyder
,
D. J.
Muraki
,
R.
Plougonven
, and
F.
Zhang
, “
Inertia-gravity waves generated within a dipole vortex
,”
J. Atmos. Sci.
64
,
4417
4431
(
2007
).
43.
C.
Snyder
,
R.
Plougonven
, and
D. J.
Muraki
, “
Mechanisms for spontaneous gravity wave generation within a dipole vortex
,”
J. Atmos. Sci.
66
,
3464
3478
(
2009
).
44.
A.
Viudez
, “
Spiral patterns of inertia-gravity waves in geophysical flows
,”
J. Fluid Mech.
562
,
73
82
(
2006
).
45.
E.
Pallas-Sanz
and
A.
Viudez
, “
Spontaneous generation of inertia-gravity waves during the merging of two baroclinic anticyclones
,”
J. Phys. Oceanogr.
38
,
213
234
(
2008
).
46.
B.
Zhao
,
Z.
Xu
,
Q.
Li
,
Y.
Wang
, and
B.
Yin
, “
Transient generation of spiral inertia-gravity waves from a geostrophic vortex
,”
Phys. Fluids
33
,
032119
(
2021
).
47.
R.
Zanella
,
G.
Tegze
,
R. L.
Tellier
, and
H.
Henry
, “
Two-and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model
,”
Phys. Fluids
32
,
124115
(
2020
).
48.
L.
Xu
, “
Numerical study of the material transport in the viscous vortex dipole flow
,”
Phys. Fluids
32
,
053602
(
2019
).
49.
Y.
Yuan
and
A. R.
Horner-Devine
, “
Experimental investigation of large-scale vortices in a freely spreading gravity current
,”
Phys. Fluids
29
,
106603
(
2017
).
50.
Z.
He
,
L.
Zhao
,
R.
Zhu
, and
P.
Hu
, “
Separation of particle-laden gravity currents down a slope in linearly stratified environments
,”
Phys. Fluids
31
,
106602
(
2019
).
51.
J. M. P.
Nicholson
,
H.
Power
,
O.
Tammisola
,
S.
Hibberd
, and
E. D.
Kay
, “
Fluid dynamics of the slip boundary condition for isothermal rimming flow with moderate inertial effects
,”
Phys. Fluids
31
,
033602
(
2019
).
52.
Z.
Zhang
,
W.
Wang
, and
B.
Qiu
, “
Oceanic mass transport by mesoscale eddies
,”
Science
345
,
322
324
(
2014
).
53.
A.
Aounia
, “
A hybrid identification and tracking of Lagrangian mesoscale eddies
,”
Phys. Fluids
33
,
036604
(
2021
).
54.
A.
DüPenna
and
P.
Gaube
, “
Mesoscale eddies structure mesopelagic communities
,”
Front. Mar. Sci.
7
,
454
(
2020
).
55.
P.
Gaube
,
D. J.
McGillicuddy
, and
A. J.
Moulin
, “
Mesoscale eddies modulate mixed layer depth globally
,”
Geophys. Res. Lett.
46
,
1505
1512
, (
2019
).
56.
Z.
Zhang
,
J.
Tian
,
B.
Qiu
,
W.
Zhao
,
P.
Chang
,
D.
Wu
, and
X.
Wan
, “
Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea
,”
Sci. Rep.
6
,
24349
(
2016
).
57.
A.
Natarov
and
K. J.
Richards
, “
Persistent presence of small vertical scale velocity features during three-dimensional equilibration of equatorial inertial instability
,”
Phys. Fluids
27
,
084109
(
2015
).
58.
J. A.
Benthuysen
and
L. N.
Thomas
, “
Asymmetries in vertical vorticity and vertical velocity arising during nonlinear homogeneous spindown
,”
Phys. Fluids
24
,
076601
(
2012
).
59.
I.
Rosso
,
A.
Hogg
,
P.
Strutton
,
A.
Kiss
,
R.
Matear
,
A.
Klocker
, and
E.
Sebille
, “
Vertical transport in the ocean due to submesoscale structures: Impacts in the Kerguelen region
,”
Ocean Modell.
80
,
10
23
(
2014
).
60.
I.
Rosso
,
A.
Hogg
,
A.
Kiss
, and
B.
Gayen
, “
Topographic influence on submesoscale dynamics in the Southern Ocean
,”
Ocean Modell.
42
,
1139
1147
(
2015
).
61.
S. D.
Bachman
,
J.
Taylor
,
K.
Adams
, and
P.
Hosegood
, “
Mesoscale and submesoscale effects on mixed layer depth in the Southern Ocean
,”
J. Phys. Oceanogr.
47
,
2173
2188
(
2017
).
62.
B.
Qiu
,
S.
Chen
,
P.
Klein
,
J.
Wang
,
H.
Torres
,
L.-L.
Fu
, and
D.
Menemenlis
, “
Seasonality in transition scale from balanced to unbalanced motions in the World Ocean
,”
J. Phys. Oceanogr.
48
,
591
605
(
2018
).
63.
W.
Munk
, “
Internal waves and small-scale processes
,” in
Scientific Papers
, edited by
B. A.
Warren
and
C.
Wunsch
(
MIT Press
,
1981
), pp.
264
291
.
64.
F.
Schott
and
H.
Stommel
, “
Beta spirals and absolute velocities in different oceans
,”
Deep Sea Res.
25
,
961
1010
(
1978
).
65.
R. X.
Huang
,
Ocean Circulation: Wind-Driven and Thermohaline Processes
(
Cambridge University Press
,
NY
,
2010
).
66.
M.
Cui
,
Y.
Li
, and
D.
Hu
, “
Two beta spirals in the western boundary region of the Pacific
,”
Chin. J. Oceanol. Limnol.
9
,
358
363
(
1991
).
67.
D. Z.
Yang
,
R. X.
Huang
,
B.
Yin
,
X.
Feng
,
H.
Chen
,
J.
Qi
,
L. J.
Xu
,
Y.
Shi
,
X.
Cui
,
G.
Gao
, and
J.
Benthuysen
, “
Topographic beta spiral and onshore intrusion of the Kuroshio current
,”
Geophys. Res. Lett.
45
,
287
296
, (
2018
).
68.
X. Z.
Song
,
R. X.
Huang
,
D. X.
Wu
,
F. L.
Qiao
, and
G. S.
Wang
, “
Geostrophic spirals generated by the horizontal diffusion of vortex stretching in the Yellow Sea
,”
Adv. Atmos. Sci.
36
,
219
230
(
2019
).
69.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer-Verlag
,
NY
,
1986
).
70.
D.
Wang
,
C. N.
Flagg
,
K.
Donohue
, and
H. T.
Rossby
, “
Wavenumber spectrum in the gulf stream from shipboard ADCP observations and comparison with altimetry measurements
,”
J. Phys. Oceanogr.
40
,
840
844
(
2010
).
You do not currently have access to this content.