Advances in time-resolved three-dimensional Particle Tracking Velocimetry (4D-PTV) techniques have consistently revealed more accurate Lagrangian particle motions. A novel track initialization technique as a complementary part of 4D-PTV, based on local temporal and spatial coherency of neighbor trajectories, is proposed. The proposed Lagrangian Coherent Track Initialization (LCTI) applies physics-based Finite Time Lyapunov Exponent (FTLE) to build four frame coherent tracks. We locally determine Lagrangian coherent structures among neighbor trajectories by using the FTLE boundaries (i.e., ridges) to distinguish the clusters of coherent motions. To evaluate the proposed technique, we created an open-access synthetic Lagrangian and Eulerian dataset of the wake downstream of a smooth cylinder at a Reynolds number equal to 3900 obtained from three-dimensional direct numerical simulation. Performance of the proposed method based on three characteristic parameters, temporal scale, particle concentration (i.e., density), and noise ratio, showed robust behavior in finding true tracks compared to the recent initialization algorithms. Sensitivity of LCTI to the number of untracked and wrong tracks is also discussed. We address the capability of using the proposed method as a function of a 4D-PTV scheme in the Lagrangian particle tracking challenge. We showed that LCTI prevents 4D-PTV divergence in flows with high particle concentrations. Finally, the LCTI behavior was demonstrated in a jet impingement experiment. LCTI was found to be a reliable tracking tool in complex flow motions, with a strength revealed for flows with high velocity and acceleration gradients.

1.
D.
Schanz
,
S.
Gesemann
, and
A.
Schröder
, “
Shake-The-Box: Lagrangian particle tracking at high particle image densities
,”
Exp. Fluids
57
,
1
27
(
2016
).
2.
B.
Wieneke
, “
Iterative reconstruction of volumetric particle distribution
,”
Meas. Sci. Technol.
24
,
024008
(
2013
).
3.
Y.
Yang
and
D.
Heitz
, “
Kernelized Lagrangian particle tracking
,”
Exp. Fluids
(submitted) (
2021
).
4.
N. A.
Malik
,
T.
Dracos
, and
D. A.
Papantoniou
, “
Particle tracking velocimetry in three-dimensional flows—Part II: Particle tracking
,”
Exp. Fluids
15
,
279
294
(
1993
).
5.
N. T.
Ouellette
,
H.
Xu
, and
E.
Bodenschatz
, “
A quantitative study of three-dimensional Lagrangian particle tracking algorithms
,”
Exp. Fluids
40
,
301
313
(
2006
).
6.
Z.
Dou
,
P. J.
Ireland
,
A. D.
Bragg
,
Z.
Liang
,
L. R.
Collins
, and
H.
Meng
, “
Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry
,”
Exp. Fluids
59
,
1
17
(
2018
).
7.
A.
Clark
,
N.
MacHicoane
, and
A.
Aliseda
, “
A quantitative study of track initialization of the four-frame best estimate algorithm for three-dimensional Lagrangian particle tracking
,”
Meas. Sci. Technol.
30
,
045302
(
2019
).
8.
N.
Machicoane
,
P. D.
Huck
,
A.
Clark
,
A.
Aliseda
,
R.
Volk
, and
M.
Bourgoin
, “
Recent developments in particle tracking diagnostics for turbulence research
,” in
Flowing Matter
(
Springer
,
Cham
,
2019
), pp.
177
209
.
9.
C.
Cierpka
,
B.
Lütke
, and
C. J.
Kähler
, “
Higher order multi-frame particle tracking velocimetry
,”
Exp. Fluids
54
,
1
12
(
2013
).
10.
N. D.
Cardwell
,
P. P.
Vlachos
, and
K. A.
Thole
, “
A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows
,”
Meas. Sci. Technol.
22
,
105406
(
2011
).
11.
Y. G.
Guezennec
,
R. S.
Brodkey
,
N.
Trigui
, and
J. C.
Kent
, “
Algorithms for fully automated three-dimensional particle tracking velocimetry
,”
Exp. Fluids
17
,
209
219
(
1994
).
12.
S.
Gupta
and
S. A.
Vanapalli
, “
Microfluidic shear rheology and wall-slip of viscoelastic fluids using holography-based flow kinematics
,”
Phys. Fluids
32
,
012006
(
2020
).
13.
G.
Haller
, “
Lagrangian coherent structures
,”
Annu. Rev. Fluid Mech.
47
,
137
162
(
2015
).
14.
S.
Balasuriya
,
R.
Kalampattel
, and
N. T.
Ouellette
, “
Hyperbolic neighbourhoods as organizers of finite-time exponential stretching
,”
J. Fluid Mech.
807
,
509
545
(
2016
).
15.
See http://cfdforpiv.dlr.de/ for “
3rd workshop and 1st challenge on data assimilation & CFD processing for PIV and Lagrangian particle tracking
” (
2020
).
16.
S.
Tan
,
A.
Salibindla
,
A. U. M.
Masuk
, and
R.
Ni
, “
Introducing OpenLPT: New method of removing ghost particles and high-concentration particle shadow tracking
,”
Exp. Fluids
61
,
1
16
(
2020
).
17.
S.
Rafati
and
N. T.
Clemens
, “
Frameworks for investigation of nonlinear dynamics: Experimental study of the turbulent jet
,”
Phys. Fluids
32
,
085112
(
2020
).
18.
X.
Ma
,
Z.
Tang
, and
N.
Jiang
, “
Eulerian and Lagrangian analysis of coherent structures in separated shear flow by time-resolved particle image velocimetry
,”
Phys. Fluids
32
,
065101
(
2020
).
19.
S.
Krishna
,
M. A.
Green
, and
K.
Mulleners
, “
Flowfield and force evolution for a symmetric hovering flat-plate wing
,”
AIAA J.
56
,
1360
1371
(
2018
).
20.
S.
Qin
,
H.
Liu
, and
Y.
Xiang
, “
On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings
,”
Phys. Fluids
30
,
011901
(
2018
).
21.
A.
Hadjighasem
,
D.
Karrasch
,
H.
Teramoto
, and
G.
Haller
, “
Spectral-clustering approach to Lagrangian vortex detection
,”
Phys. Rev. E
93
,
063107
(
2016
).
22.
R. M.
Samelson
, “
Lagrangian motion, coherent structures, and lines of persistent material strain
,”
Annu. Rev. Mar. Sci.
5
,
137
163
(
2013
).
23.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Physica D
212
,
271
304
(
2005
).
24.
T. K.
Alligood
,
D. T.
Sauer
, and
A. J.
Yorke
,
CHAOS: An Introduction to Dynamical Systems
(
Springer
,
1996
), pp.
193
228
.
25.
S. G.
Raben
,
S. D.
Ross
, and
P. P.
Vlachos
, “
Computation of finite-time Lyapunov exponents from time-resolved particle image velocimetry data
,”
Exp. Fluids
55
,
1
14
(
2014
).
26.
D.
Lipinski
and
K.
Mohseni
, “
A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures
,”
Chaos
20
,
017504
(
2010
).
27.
B.
Lecordier
and
J.
Westerweel
, “
The EUROPIV Synthetic Image Generator (S.I.G.)
,” in
Particle Image Velocimetry: Recent Improvements
(
Springer
,
2004
), pp.
145
161
.
28.
M.
Patel
,
S. E.
Leggett
,
A. K.
Landauer
,
I. Y.
Wong
, and
C.
Franck
, “
Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields
,”
Sci. Rep.
8
,
5581
(
2018
).
29.
C.
He
,
Y.
Liu
, and
L.
Gan
, “
Instantaneous pressure determination from unsteady velocity fields using adjoint-based sequential data assimilation
,”
Phys. Fluids
32
,
035101
(
2020
).
30.
P.
Bartholomew
,
G.
Deskos
,
R. A.
Frantz
,
F. N.
Schuch
,
E.
Lamballais
, and
S.
Laizet
, “
Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh
,”
SoftwareX
12
,
100550
(
2020
).
31.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comput. Phys.
228
,
5989
6015
(
2009
).
32.
S.
Laizet
and
N.
Li
, “
Incompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores
,”
Int. J. Numer. Methods Fluids
67
,
1735
1757
(
2011
).
33.
P.
Chandramouli
,
D.
Heitz
,
S.
Laizet
, and
E.
Mémin
, “
Coarse large-eddy simulations in a transitional wake flow with flow models under location uncertainty
,”
Comput. Fluids
168
,
170
189
(
2018
).
34.
E. v
Sebille
,
S. M.
Griffies
,
R.
Abernathey
,
T. P.
Adams
,
P.
Berloff
,
A.
Biastoch
,
B.
Blanke
,
E. P.
Chassignet
,
Y.
Cheng
,
C. J.
Cotter
,
E.
Deleersnijder
,
K.
Döös
,
H. F.
Drake
,
S.
Drijfhout
,
S. F.
Gary
,
A. W.
Heemink
,
J.
Kjellsson
,
I. M.
Koszalka
,
M.
Lange
,
C.
Lique
,
G. A.
MacGilchrist
,
R.
Marsh
,
C. G.
Mayorga Adame
,
R.
McAdam
,
F.
Nencioli
,
C. B.
Paris
,
M. D.
Piggott
,
J. A.
Polton
,
S.
Rühs
,
S. H. A. M.
Shah
,
M. D.
Thomas
,
J.
Wang
,
P. J.
Wolfram
,
L.
Zanna
, and
J. D.
Zika
, “
Lagrangian ocean analysis: Fundamentals and practices
,”
Ocean Modell.
121
,
49
75
(
2018
).
35.
A. R.
Khojasteh
,
S.
Laizet
,
D.
Heitz
, and
Y.
Yang
, “
Lagrangian and Eulerian dataset of the wake downstream of a smooth cylinder at a Reynolds number equal to 3900
,”
Data Brief
(submitted) (
2021
).
36.
D.
Michaelis
,
C.
Poelma
,
F.
Scarano
,
J.
Westerweel
, and
B.
Wieneke
, “
A 3D time-resolved cylinder wake survey by tomographic PIV
,” in
12th International Symposium on Flow Visualisation
(
2006
), pp.
1
11
, see https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+3D+time-resolved+cylinder+wake+survey+by+tomographic+PIV&btnG=.
37.
G. E.
Elsinga
,
F.
Scarano
,
B.
Wieneke
, and
B. W.
Van Oudheusden
, “
Tomographic particle image velocimetry
,”
Exp. Fluids
41
,
933
947
(
2006
).
38.
N. J.
Neeteson
,
S.
Bhattacharya
,
D. E.
Rival
,
D.
Michaelis
,
D.
Schanz
, and
A.
Schröder
, “
Pressure-field extraction from Lagrangian flow measurements: First experiences with 4D-PTV data
,”
Exp. Fluids
57
,
102
(
2016
).
39.
Z.
Sun
and
C.
Brücker
, “
Investigation of the vortex ring transition using scanning Tomo-PIV
,”
Exp. Fluids
58
,
36
(
2017
).
40.
F.
Huhn
,
D.
Schanz
,
P.
Manovski
,
S.
Gesemann
, and
A.
Schröder
, “
Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking
,”
Exp. Fluids
59
,
81
(
2018
).
41.
J. F. G.
Schneiders
,
G. C. A.
Caridi
,
A.
Sciacchitano
, and
F.
Scarano
, “
Large-scale volumetric pressure from tomographic PTV with HFSB tracers
,”
Exp. Fluids
57
,
164
(
2016
).
42.
F.
Scarano
,
S.
Ghaemi
,
G. C. A.
Caridi
,
J.
Bosbach
,
U.
Dierksheide
, and
A.
Sciacchitano
, “
On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments
,”
Exp. Fluids
56
,
42
(
2015
).
43.
C.
He
and
Y.
Liu
, “
Proper orthogonal decomposition-based spatial refinement of TR-PIV realizations using high-resolution non-TR-PIV measurements
,”
Exp. Fluids
58
,
86
(
2017
).
44.
A.
Schröder
,
C.
Willert
,
D.
Schanz
,
R.
Geisler
,
T.
Jahn
,
Q.
Gallas
, and
B.
Leclaire
, “
The flow around a surface mounted cube: A characterization by time-resolved PIV, 3D Shake-The-Box and LBM simulation
,”
Exp. Fluids
61
,
189
(
2020
).
45.
T. W.
Fahringer
,
K. P.
Lynch
, and
B. S.
Thurow
, “
Volumetric particle image velocimetry with a single plenoptic camera
,”
Meas. Sci. Technol.
26
,
115201
(
2015
).
46.
M.
Miozzi
,
A.
Capone
,
C.
Klein
, and
F. D.
Felice
, “
Integrating high-frequency, time resolved TSP surface maps and wake flow Lagrangian description to investigate sub critical regime in a crossflow cylinder
,” in
11th International Symposium on Particle Image Velocimetry
(
2015
), pp.
1
6
, see https://elib.dlr.de/99140/.
47.
R.
Hain
,
C. J.
Kähler
, and
D.
Michaelis
, “
Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate
,”
Exp. Fluids
45
,
715
724
(
2008
).
48.
D.
Violato
and
F.
Scarano
, “
Three-dimensional evolution of flow structures in transitional circular and chevron jets
,”
Phys. Fluids
23
,
124104
(
2011
).
49.
A.
Booysen
,
P.
Das
, and
S.
Ghaemi
, “
Shake-the-Box PTV in the Wake of an Ahmed Body Using Helium Filled Soap Bubbles
,” in
13th International Symposium on Particle Image Velocimetry
(
2019
), pp.
301
310
, see https://athene-forschung.unibw.de/128737?query=ghaemi&show_id=128895.
50.
A. R.
Khojasteh
,
D.
Heitz
,
Y.
Yang
, and
S.
Laizet
, “
Lagrangian coherent track initialisation
,” in
3rd Workshop and 1st Challenge on Data Assimilation & CFD Processing for PIV and Lagrangian Particle Tracking
(
2020
).
51.
D.
Schanz
,
M.
Novara
, and
A.
Schröder
, “
Shake-The-Box particle tracking with variable time-steps in flows with high velocity range (VT-STB)
,” in
3rd Workshop and 1st Challenge on Data Assimilation & CFD Processing for PIV and Lagrangian Particle Tracking
(
2020
).
52.
M.
Filippi
,
I. I.
Rypina
,
A.
Hadjighasem
, and
T.
Peacock
, “
An optimized-parameter spectral clustering approach to coherent structure detection in geophysical flows
,”
Fluids
6
,
39
34
(
2021
).
53.
F. A. C.
Martins
,
A.
Sciacchitano
, and
D. E.
Rival
, “
Detection of vortical structures in sparse Lagrangian data using coherent-structure colouring
,”
Exp. Fluids
62
,
69
(
2021
).
54.
A. R.
Khojasteh
,
S.
Laizet
,
D.
Heitz
, and
Y.
Yang
(
2021
). “
Lagrangian and Eulerian dataset of flow over a circular cylinder at Reynolds number 3900
,” Data INRAE.
You do not currently have access to this content.