Vorticity transport in turbulent channels under large-scale active drag control (i.e., spanwise opposed jet forcing) is investigated via direct numerical simulation of the Navier–Stokes equation. The skin-friction coefficient is newly expressed by the volume integration average of the mean flow dissipation expressed in terms of the spanwise vorticity (Ωz), and the turbulent transports of the spanwsie vorticity fluctuation (vωz) and of the wall-normal vorticity fluctuation (wωy). Three Reynolds number cases (i.e., Reτ=180,395, and 550) with notable drag reductions (i.e., 18%, 16%, and 15%, respectively) are examined, following the setup in Yao et al. [Phys. Rev. Fluids 2, 062601(R) (2017)]. The transports of vorticity fluctuations dominate the contributions to the frictional drag, consistent with previous results for the passive drag reduction strategy of slip-wall [Yoon et al., Phys. Fluids. 28, 081702 (2016)]. Specifically, the effect of vωz is to increase drag (due to sweeping v), while wωy decreases the drag. A triple decomposition (mean, coherent, and random) reveals the random vωz as the only term adding to drag, while the random wωy and the coherent ṽω̃z and w̃ω̃y transports all decrease the drag. Weighted joint probability distribution function (p.d.f.) of v and ωz shows a transition from the first–third quadrant dominance (hence positive-correlated) near the wall to the second–fourth quadrant dominance (hence negative-correlated) away from wall. In contrast, w and ωy are negatively correlated in the entire region. The analysis here suggests that the suppression of random spanwise-vorticity transport (vωz) is the target for more effective drag reduction under the current method.

1.
M.
Gad-el Hak
,
Flow Control: Passive, Active, and Reactive Flow Management
(
Cambridge University Press
,
2007
).
2.
D.
Bechert
,
M.
Bruse
,
W. v
Hage
,
J. T.
Van der Hoeven
, and
G.
Hoppe
, “
Experiments on drag-reducing surfaces and their optimization with an adjustable geometry
,”
J. Fluid Mech.
338
,
59
(
1997
).
3.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
(
2010
).
4.
H.
Park
,
G.
Sun
 et al., “
Superhydrophobic turbulent drag reduction as a function of surface grating parameters
,”
J. Fluid Mech.
747
,
722
(
2014
).
5.
A.
Checco
,
B. M.
Ocko
,
A.
Rahman
,
C. T.
Black
,
M.
Tasinkevych
,
A.
Giacomello
, and
S.
Dietrich
, “
Collapse and reversibility of the superhydrophobic state on nanotextured surfaces
,”
Phys. Rev. Lett.
112
,
216101
(
2014
).
6.
A.
Rastegari
and
R.
Akhavan
, “
The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets
,”
J. Fluid Mech.
838
,
68–104
(
2018
).
7.
M.
Yoon
,
J.
Hwang
,
J.
Lee
,
H. J.
Sung
, and
J.
Kim
, “
Large-scale motions in a turbulent channel flow with the slip boundary condition
,”
Int. J. Heat Fluid Flow
61
,
96
(
2016
).
8.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
(
1994
).
9.
Y.
Sumitani
and
N.
Kasagi
, “
Direct numerical simulation of turbulent transport with uniform wall injection and suction
,”
AIAA J.
33
,
1220
(
1995
).
10.
Y.
Kametani
and
K.
Fukagata
, “
Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
,”
J. Fluid Mech.
681
,
154
(
2011
).
11.
W.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids A
4
,
1605
(
1992
).
12.
J.-I.
Choi
,
C.-X.
Xu
, and
H. J.
Sung
, “
Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
,”
AIAA J.
40
,
842
(
2002
).
13.
M.
Quadrio
,
P.
Ricco
, and
C.
Viotti
, “
Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction
,”
J. Fluid Mech.
627
,
161
(
2009
).
14.
M.
Quadrio
, “
Drag reduction in turbulent boundary layers by in-plane wall motion
,”
Philos. Trans. R. Soc. A
369
,
1428
(
2011
).
15.
L.
Agostini
,
E.
Touber
, and
M. A.
Leschziner
, “
Spanwise oscillatory wall motion in channel flow: Drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Reτ = 1000
,”
J. Fluid Mech.
743
,
606
(
2014
).
16.
A.
Yakeno
,
Y.
Hasegawa
, and
N.
Kasagi
, “
Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation
,”
Phys. Fluids
26
,
085109
(
2014
).
17.
J.
Kim
and
T. R.
Bewley
, “
A linear systems approach to flow control
,”
Annu. Rev. Fluid Mech.
39
,
383
(
2007
).
18.
Y. M.
Chung
and
T.
Talha
, “
Effectiveness of active flow control for turbulent skin friction drag reduction
,”
Phys. Fluids
23
,
025102
(
2011
).
19.
B.-Q.
Deng
and
C.-X.
Xu
, “
Influence of active control on stg-based generation of streamwise vortices in near-wall turbulence
,”
J. Fluid Mech.
710
,
234
(
2012
).
20.
H.
Mamori
,
K.
Iwamoto
, and
A.
Murata
, “
Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow
,”
Phys. Fluids
26
,
015101
(
2014
).
21.
F. O.
Thomas
,
T. C.
Corke
,
M.
Iqbal
,
A.
Kozlov
, and
D.
Schatzman
, “
Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control
,”
AIAA J.
47
,
2169
(
2009
).
22.
M. E.
Lozier
,
F. O.
Thomas
, and
S.
Gordeyev
, “
Streamwise evolution of turbulent boundary layer response to active control actuator
” in AIAA Scitech 2020 Forum (
2020
).
23.
M.
de Giovanetti
,
Y.
Hwang
, and
H.
Choi
, “
Skin-friction generation by attached eddies in turbulent channel flow
,”
J. Fluid Mech.
808
,
511
(
2016
).
24.
W.
Schoppa
and
F.
Hussain
, “
A large-scale control strategy for drag reduction in turbulent boundary layers
,”
Phys. Fluids
10
,
1049
(
1998
).
25.
J.
Canton
,
R.
Örlü
,
C.
Chin
, and
P.
Schlatter
, “
Reynolds number dependence of large-scale friction control in turbulent channel flow
,”
Phys. Rev. Fluids
1
,
081501
(
2016
).
26.
J.
Yao
,
X.
Chen
,
F.
Thomas
, and
F.
Hussain
, “
Large-scale control strategy for drag reduction in turbulent channel flows
,”
Phys. Rev. Fluids
2
,
062601(R)
(
2017
).
27.
J.
Yao
,
X.
Chen
, and
F.
Hussain
, “
Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing
,”
J. Fluid Mech.
852
,
678
(
2018
).
28.
X.
Chen
,
J.
Yao
, and
F.
Hussain
, “
Theoretical framework for energy flux analysis of channels under drag control
,”
Phys. Rev. Fluids
6
,
013902
(
2021
).
29.
G.
Iuso
,
M.
Onorato
,
P. G.
Spazzini
, and
G. M.
Di Cicca
, “
Wall turbulence manipulation by large-scale streamwise vortices
,”
J. Fluid Mech.
473
,
23
(
2002
).
30.
M.
Cannata
,
G.
Cafiero
, and
G.
Iuso
, “
Large-scale forcing of a turbulent channel flow through spanwise synthetic jets
,”
AIAA J.
58
,
2042
(
2020
).
31.
T. C.
Corke
and
F. O.
Thomas
, “
Active and passive turbulent boundary-layer drag reduction
,”
AIAA J.
56
,
3835
(
2018
).
32.
X.
Cheng
,
C.
Wong
,
F.
Hussain
,
W.
Schröder
, and
Y.
Zhou
, “
Flat plate drag reduction using plasma-generated streamwise vortices
,”
J. Fluid Mech.
918
,
A24
(
2021
).
33.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
(
2002
).
34.
I.
Yudhistira
and
M.
Skote
, “
Direct numerical simulation of a turbulent boundary layer over an oscillating wall
,”
J. Turbul.
12
,
N9
(
2011
).
35.
M.
Yoon
,
J.
Ahn
, and
J.
Hwang
, “
Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows
,”
Phys. Fluids
28
,
081702
(
2016
).
36.
N.
Renard
and
S.
Deck
, “
A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
,”
J. Fluid Mech.
790
,
339
(
2016
).
37.
W.
Li
,
Y. T.
Fan
,
D.
Modesti
, and
C.
Cheng
, “
Decomposition of the mean skin-friction drag in compressible turbulent channel flows
,”
J. Fluid Mech.
875
,
101
(
2019
).
38.
R.
Alessio
,
Z.
Francesco
, and
S.
Alfredo
, “
Energy balance in lubricated drag-reduced turbulent channel flow
,”
J. Fluid Mech.
911
,
A37
(
2021
).
39.
J.
Yao
,
X.
Chen
, and
F.
Hussain
, “
Composite active drag control in turbulent channel flows
,”
Phys. Rev. Fluids
6
,
054605
(
2021
).
40.
S.
Deck
,
N.
Renard
,
R.
Laraufie
, and
P-l
Weiss
, “
Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ = 13650
,”
J. Fluid Mech.
743
,
202
(
2014
).
41.
E.
Hurst
,
Q.
Yang
, and
Y. M.
Chung
, “
The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves
,”
J. Fluid Mech.
759
,
28
(
2014
).
42.
Y.-S.
Wang
,
W.-X.
Huang
, and
C.-X.
Xu
, “
Active control for drag reduction in turbulent channel flow: The opposition control schemes revisited
,”
Fluid Dyn. Res.
48
,
055501
(
2016
).
43.
L.
Agostini
and
M.
Leschziner
, “
The impact of footprints of large-scale outer structures on the near-wall layer in the presence of drag-reducing spanwise wall motion
,”
Flow, Turbul. Combust.
100
,
1037
(
2018
).
44.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comput. Phys.
228
,
5989
(
2009
).
45.
S.
Laizet
and
N.
Li
, “
Incompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores
,”
Int. J. Numer. Methods Fluids
67
,
1735
(
2011
).
46.
X.
Chen
,
F.
Hussain
, and
Z.
She
, “
Non-universal scaling transition of momentum cascade in wall turbulence
,”
J. Fluid Mech.
871
,
R2
(
2019
).
47.
G. I.
Taylor
, “
The transport of vorticity and heat through fluids in turbulent motion
,”
Proc. R. Soc. London, Ser. A
135
,
685
(
1932
).
48.
J. C.
Klewicki
, “
Velocity-vorticity correlations related to the gradients of the Reynolds stresses in parallel turbulent wall flows
,”
Phys. Fluids A
1
,
1285
(
1989
).
49.
G.
Brown
,
M.
Lee
, and
R.
Moser
, “
Vorticity transport: The transfer of viscous stress to Reynolds stress in turbulent channel flow
,” in
International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9)
(
2015
).
50.
R. L.
Ebner
,
F.
Mehdi
, and
J. C.
Klewicki
, “
Shared dynamical features of smooth- and rough-wall boundary-layer turbulence
,”
J. Fluid Mech.
792
,
435
469
(
2016
).
51.
J.
Hwang
and
H. J.
Sung
, “
Influence of large-scale motions on the frictional drag in a turbulent boundary layer
,”
J. Fluid Mech.
829
,
751
(
2017
).
52.
J.-S.
Kim
,
J.
Hwang
,
M.
Yoon
,
J.
Ahn
, and
H. J.
Sung
, “
Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer
,”
Phys. Fluids
29
,
065103
(
2017
).
53.
W.
Reynolds
and
A.
Hussain
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
(
1972
).
54.
C.
Chin
,
J.
Philip
,
J.
Klewicki
,
A.
Ooi
, and
I.
Marusic
, “
Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows
,”
J. Fluid Mech.
757
,
747
(
2014
).
55.
J. C.
Klewicki
,
J. A.
Murray
, and
R. E.
Falco
, “
Vortical motion contributions to stress transport in turbulent boundary layers
,”
Phys. Fluids
6
,
277
(
1994
).
56.
A. E.
Perry
and
M. S.
Chong
, “
On the mechanism of wall turbulence
,”
J. Fluid Mech.
119
,
173
(
1982
).
57.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1–54
(
2000
).
58.
T.
Wei
, “
Integral properties of turbulent-kinetic-energy production and dissipation in turbulent wall bounded flows
,”
J. Fluid Mech.
854
,
449
(
2018
).
You do not currently have access to this content.