A spanwise traveling wave, generated by blowing and suction at walls, is applied in direct numerical simulations to reduce the drag in a fully developed turbulent channel flow with Reτ180. The wave traveling direction reverses periodically to induce a spanwise motion of the flow near the wall, similar to that from spanwise wall oscillations. Such a motion can be approximated by an infinite series of the Stokes layers in an asymptotic expansion. A relation linking the blowing and suction velocity and frequency for the traveling wave is derived to achieve a drag reduction similar to the case with spanwise wall oscillation. A drag reduction of 24% is achieved in the present study. From the analyses of the energy budget of Reynolds stresses, the drag reduction mechanism is found strongly related to the pressure–strain correlations. The reduced wall-normal strain rate and pressure–strain correlation are the main causes of the decrease in energy components of turbulence. The induced spanwise motion also weakens the streamwise strain rate through inclining the vortex structures periodically and modulates the spanwise strain rate through its production term.

1.
G.
Schrauf
, “
Status and perspectives of laminar flow
,”
Aeronaut. J.
109
,
639
644
(
2005
).
2.
R.
Pierre
,
S.
Martin
, and
A.
Micheal
, “
A review of turbulent skin-friction drag mechanism by near-wall transverse forcing
,” arXiv:2103.04719 (
2021
).
3.
P.
Luchini
,
F.
Manzo
, and
A.
Pozzi
, “
Resistance of a grooved surface to parallel flow and cross-flow
,”
J. Fluid Mech.
228
,
87
109
(
1991
).
4.
W. J.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids A
4
,
1605
1607
(
1992
).
5.
A.
Baron
and
M.
Quadrio
, “
Turbulent drag reduction by spanwise wall oscillations
,”
Appl. Sci. Res.
55
,
311
326
(
1996
).
6.
M.
Quadrio
and
P.
Ricco
, “
Initial response of a turbulent channel flow to spanwise oscillation of the walls
,”
J. Turbul.
4
,
1
23
(
2003
).
7.
M.
Quadrio
and
P.
Ricco
, “
Critical assessment of turbulent drag reduction through spanwise wall oscillations
,”
J. Fluid Mech.
521
,
251–271
(
2004
).
8.
E.
Touber
and
M. A.
Leschziner
, “
Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms
,”
J. Fluid Mech.
693
,
150
200
(
2012
).
9.
P.
Ricco
,
C.
Ottonelli
,
Y.
Hasegawa
, and
M.
Quadrio
, “
Changes in turbulent dissipation in a channel flow with oscillating walls
,”
J. Fluid Mech.
700
,
77
104
(
2012
).
10.
L.
Agostini
,
E.
Touber
, and
M. A.
Leschziner
, “
The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion
,”
Int. J. Heat Fluid Flow
51
,
3
15
(
2015
).
11.
Y.
Wenjun
,
Z.
Mengqi
,
C.
Yongdong
, and
K.
Boo Cheong
, “
Phase-space dynamics of near-wall streaks in wall-bounded turbulence with spanwise oscillation
,”
Phys. Fluids
31
,
125113
(
2019
).
12.
C.-X.
Xu
and
W.-X.
Huang
, “
Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow
,”
Phys. Fluids
17
,
018101
(
2005
).
13.
J.
Jiménez
and
A.
Pinelli
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
14.
P.
Orlandi
and
J.
Jiménez
, “
On the generation of turbulent wall friction
,”
Phys. Fluids
6
,
634
641
(
1994
).
15.
J.
Jiménez
, “
Coherent structures in wall-bounded turbulence
,”
J. Fluid Mech.
842
,
P1
(
2018
).
16.
K.-S.
Choi
, “
Near-wall structure of turbulent boundary layer with spanwise-wall oscillation
,”
Phys. Fluids
14
,
2530
2542
(
2002
).
17.
P.
Ricco
, “
Modification of near-wall turbulence due to spanwise wall oscillations
,”
J. Turbul.
5
,
20
20
(
2004
).
18.
Y.
Jie
,
C.
Xi
, and
H.
Fazle
, “
Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows
,”
Phys. Fluids
31
,
085108
(
2019
).
19.
S.
Chernyshenko
and
M.
Baig
, “
The mechanism of streak formation in near-wall turbulence
,”
J. Fluid Mech.
544
,
99
131
(
2005
).
20.
O.
Blesbois
,
S. I.
Chernyshenko
,
E.
Touber
, and
M. A.
Leschziner
, “
Pattern prediction by linear analysis of turbulent flow with drag reduction by wall oscillation
,”
J. Fluid Mech.
724
,
607
641
(
2013
).
21.
G.
Karniadakis
and
K.-S.
Choi
, “
Mechanisms on transverse motions in turbulent wall flows
,”
Annu. Rev. Fluid Mech.
35
,
45
62
(
2003
).
22.
A.
Yakeno
and
Y.
Hasegawa
, “
Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation
,”
Phys. Fluids
26
,
085109
(
2014
).
23.
Y.
Du
,
V.
Symeonidis
, and
G.
Karniadakis
, “
Drag reduction in wall-bounded turbulence via a transverse travelling wave
,”
J. Fluid Mech.
457
,
1–34
(
2002
).
24.
M.
Quadrio
, “
Drag reduction in turbulent boundary layers by in-plane wall motion
,”
Philos. Trans. R. Soc. A
369
,
1428
1442
(
2011
).
25.
M. A.
Leschziner
, “
Friction-drag reduction by transverse wall motion—A review
,”
J. Mech.
36
,
649
663
(
2020
).
26.
M.
Quadrio
,
P.
Ricco
, and
C.
Viotti
, “
Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction
,”
J. Fluid Mech.
627
,
161
178
(
2009
).
27.
M.
Skote
, “
Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity
,”
Phys. Fluids
23
,
081703
(
2011
).
28.
M.
Skote
, “
Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall
,”
Int. J. Heat Fluid Flow
38
,
1
12
(
2012
).
29.
M.
Skote
, “
Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows
,”
J. Fluid Mech.
730
,
273
294
(
2013
).
30.
C.
Viotti
,
M.
Quadrio
, and
P.
Luchini
, “
Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction
,”
Phys. Fluids
21
,
115109
(
2009
).
31.
P.
Ricco
and
S.
Hahn
, “
Turbulent drag reduction through rotating discs
,”
J. Fluid Mech.
722
,
267
290
(
2013
).
32.
D. J.
Wise
,
C.
Alvarenga
, and
P.
Ricco
, “
Spinning out of control: Wall turbulence over rotating discs
,”
Phys. Fluids
26
,
125107
(
2014
).
33.
D. J.
Wise
and
P.
Ricco
, “
Turbulent drag reduction through oscillating discs
,”
J. Fluid Mech.
746
,
536
564
(
2014
).
34.
S.
Ghebali
,
S. I.
Chernyshenko
, and
M. A.
Leschziner
, “
Turbulent skin-friction reduction by wavy surfaces
,” arXiv:1705.01989 (
2017
).
35.
S.
Ghebali
,
S. I.
Chernyshenko
, and
M. A.
Leschziner
, “
Can large-scale oblique undulations on a solid wall reduce the turbulent drag?
,”
Phys. Fluids
29
,
105102
(
2017
).
36.
Z.
Ming-Xiang
,
H.
Wei-Xi
, and
X.
Chun-Xiao
, “
Drag reduction in turbulent flow along a cylinder by circumferential oscillating Lorentz force
,”
Phys. Fluids
31
,
095104
(
2019
).
37.
S.
Wilkinson
, “
Oscillating plasma for turbulent boundary layer drag reduction
,” AIAA Paper No. 2003-1023,
2003
.
38.
T.
Jukes
,
K.-S.
Choi
,
G.
Johnson
, and
S.
Scott
, “
Turbulent drag reduction by surface plasma through spanwise flow oscillation
,” AIAA Paper No. 2006-3693,
2006
.
39.
D.
Elam
, “
A direct numerical simulation of dielectric barrier discharge (DBD) plasma actuators for turbulent skin-friction control
,” Ph.D. thesis (
University of Warwick
,
2012
).
40.
F. O.
Thomas
,
T. C.
Corke
,
A.
Duong
,
S.
Midya
, and
K.
Yates
, “
Turbulent drag reduction using pulsed-DC plasma actuation
,”
J. Phys. D
52
,
434001
(
2019
).
41.
A.
Alt intaş
,
L.
Davidson
, and
S.-H.
Peng
, “
Direct numerical simulation of drag reduction by spanwise oscillating dielectric barrier discharge plasma force
,”
Phys. Fluids
32
,
075101
(
2020
).
42.
M. T.
Hehner
,
D.
Gatti
, and
J.
Kriegseis
, “
Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction
,”
Phys. Fluids
31
,
051701
(
2019
).
43.
J.
Hœpffner
and
K.
Fukagata
, “
Pumping or drag reduction?
,”
J. Fluid Mech.
635
,
171
(
2009
).
44.
J. D.
Woodcock
,
J. E.
Sader
, and
I.
Marusic
, “
Induced flow due to blowing and suction flow control: An analysis of transpiration
,”
J. Fluid Mech.
690
,
366
(
2012
).
45.
R.
Moarref
and
M. R.
Jovanović
, “
Controlling the onset of turbulence by streamwise travelling waves. Part 1. Receptivity analysis
,”
J. Fluid Mech.
663
,
70
99
(
2010
).
46.
T.
Min
,
S. M.
Kang
,
J. L.
Speyer
, and
J.
Kim
, “
Sustained sub-laminar drag in a fully developed channel flow
,”
J. Fluid Mech.
558
,
309
318
(
2006
).
47.
B. K.
Lieu
,
R.
Moarref
, and
M. R.
Jovanović
, “
Controlling the onset of turbulence by streamwise travelling waves. Part 2. Direct numerical simulation
,”
J. Fluid Mech.
663
,
100
119
(
2010
).
48.
H.
Mamori
,
K.
Iwamoto
, and
A.
Murata
, “
Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow
,”
Phys. Fluids
26
,
015101
(
2014
).
49.
L.
Shi
,
Z.
Wang
,
S.
Fu
, and, and
L.
Zhang
, “
A PNPM-CPR method for Navier-Stokes equations
,” AIAA Paper No. 2012-0460,
2012
.
50.
H.
Huynh
,
Z.
Wang
, and
P.
Vincent
, “
High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids
,”
Comput. Fluids
98
,
209
220
(
2014
).
51.
Z.
Wang
,
H.
Gao
, and, and
T.
Haga
, “
A unifying discontinuous CPR formulation for the Navier–Stokes equations on mixed grids
,” in
Computational Fluid Dynamics
, edited by
A.
Kuzmin
(
Springer
,
Berlin/Heidelberg
,
2011
), pp.
59
65
.
52.
E.
Lenormand
,
P.
Sagaut
, and
L. T.
Phuoc
, “
Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number
,”
Int. J. Numer. Methods Fluids
32
,
369
406
(
2000
).
53.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
54.
H.
Schlichting
and
K.
Gersten
,
Boundary Layer Theory
, 9th ed. (
Springer
,
2016
), p.
129
.
55.
J.-I.
Choi
,
C.-X.
Xu
, and
H. J.
Sung
, “
Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
,”
AIAA J.
40
,
842
(
2002
).
56.
A. K. M. F.
Hussain
and
W. C.
Reynolds
, “
The mechanics of an organized wave in turbulent shear flow
,”
J. Fluid Mech.
41
,
241
258
(
1970
).
57.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
L76
(
2002
).
58.
J.
Jeong
,
F.
Hussain
,
W.
Schoppa
, and
J.
Kim
, “
Coherent structures near the wall in a turbulent channel flow
,”
J. Fluid Mech.
332
,
185
214
(
1997
).
59.
M.
Quadrio
and
S.
Sibilla
Numerical simulation of turbulent flow in a pipe oscillating around its axis
,”
J. Fluid Mech.
424
,
217
241
(
2000
).
60.
J.
Jiménez
,
G.
Kawahara
,
M. P.
Simens
,
M.
Nagata
, and
M.
Shiba
, “
Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions
,”
Phys. Fluids
17
,
015105
(
2005
).
61.
C.
Xi
,
Y.
Jie
, and
H.
Fazle
, “
Theorectical framework for energy flux analysis of channels under drag control
,”
Phys. Rev. Fluid
6
,
013902
(
2021
).
62.
J.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
63.
H.
Yongyun
and
B.
Yacine
, “
Self-sustaining process of minimal attached eddies in turbulent channel flow
,”
J. Fluid Mech.
795
,
708
738
(
2016
).
64.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
You do not currently have access to this content.