The present study aims to identify the dominant coherent structures in the wall jet flow subjected to external pulsation at Reynolds number 2600 (based on average jet exit velocity and nozzle diameter). The forcing frequency is varied between St = 0 and 0.99 (St is the Strouhal number). Quadrant analysis is employed to identify the relative contribution of different quadrant motions to the total Reynolds shear stress. Unlike boundary layer flows and channel flows, two distinct regions (inner shear region and outer shear region) are observed in the wall jet flows, and the characteristics of different quadrant motions change in these regions. About 70% of the total shear stress is contributed from the first and fourth quadrants in the outer shear region. We observe that ejection motion is more energetic than sweep motion in the downstream direction, although less frequent. The ejection motion is observed to be more violent for St = 0.44 than for the other frequencies. A proper orthogonal decomposition (POD) analysis reveals while the modal structures exist in different regions of the wall for different jet pulsation; there are no dominant modes (30 modes are required to recover about 75% of the total energy), and the energy is fairly distributed over a large number of modes. However, the POD analyses are capable of capturing the response of the wall jet to different jet pulsations. The most dominant and strongest modal structures are found nearer to the impingement region of the wall when St = 0.44 and the jet tends to laminarize for St > 0.9.

1.
Agrawal
,
A.
, and
Prasad
,
A. K.
, “
Organizational modes of large-scale vortices in an axisymmetric turbulent jet
,”
Flow, Turbul. Combust.
68
(
4
),
359
377
(
2002
).
2.
Akansu
,
Y. E.
,
Sarioglu
,
M.
,
Kuvvet
,
K.
, and
Yavuz
,
T.
, “
Flow field and heat transfer characteristics in an oblique slot jet impinging on a flat plate
,”
Int. Commun. Heat Mass Transfer
35
,
873
880
(
2008
).
3.
Babic
,
D. M.
,
Murray
,
D. B.
, and
Torrence
,
A.
, “
Mist jet cooling of grinding processes
,”
International Journal of Machine Tools and Manufacture
45
(
10
),
1171
1177
(
2005
).
4.
Behera
,
R. C.
,
Dutta
,
P.
, and
Srinivasan
,
K.
, “
Numerical study of interrupted impinging jets for cooling of electronics
,”
IEEE Trans. Compon. Packag. Technol.
30
(
2
),
275
284
(
2007
).
5.
Bhapkar
,
U. S.
,
Srivastava
,
A.
, and
Agrawal
,
A.
, “
Acoustic and heat transfer characteristics of an impinging elliptical synthetic jet generated by acoustic actuator
,”
Int. J. Heat Mass Transfer
79
,
12
23
(
2014a
).
6.
Bhapkar
,
U. S.
,
Mohanan
,
S.
,
Agrawal
,
A.
, and
Srivastava
,
A.
, “
Interferometry based whole-field heat transfer measurements of an impinging turbulent synthetic jet
,”
Int. Commun. Heat Mass Transfer
58
,
118
124
(
2014b
).
7.
Bouhoubeiny
,
E.
,
Druault
,
P.
, and
Germain
,
G.
, “
Phase-averaged mean properties of turbulent flow developing around a fluttering sheet of net
,”
Ocean Eng.
82
,
160
168
(
2014
).
8.
Bremhorst
,
K.
, and
Hollis
,
P. G.
, “
Velocity field of an axisymmetric pulsed, subsonic air jet
,”
AIAA J.
28
,
2043
2049
(
1990
).
9.
Brodkey
,
R. S.
,
Wallace
,
J. M.
, and
Eckelmann
,
H.
, “
Some properties of truncated turbulence signals in bounded shear flows
,”
J. Fluid Mech.
63
,
209
224
(
1974
).
10.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
, “
Heat transfer characteristics of synthetic jet in impingement cooling
,”
Int. J. Heat Mass Transfer
53
,
1057
1069
(
2010
).
11.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
, “
Multiple orifice synthetic jet for improvement in impingement heat transfer
,”
Int. J. Heat Mass Transfer
54
,
2056
2065
(
2011
).
12.
Corino
,
E. R.
, and
Brodkey
,
R. S.
, “
A visualization of the wall region in turbulent flow
,”
J. Fluid Mech.
37
,
1
30
(
1969
).
13.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
, “
Flow visualization of a round jet impinging on cylindrical surfaces
,”
Exp. Therm. Fluid Sci.
20
(
2
),
66
78
(
1999
).
14.
Crow
,
S. C.
, and
Champagne
,
F. H.
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
,
547
591
(
1971
).
15.
Esmailpour
,
K.
,
Hosseinalipour
,
M.
,
Bozorgmehr
,
B.
, and
Mujumdar
,
A. S.
, “
A numerical study of heat transfer in a turbulent pulsating impinging jet
,”
Can. J. Chem. Eng.
93
,
959
969
(
2015
).
16.
Farrington
,
R. B.
, and
Claunch
,
S. D.
, “
Infrared imaging of large-amplitude, low frequency disturbances on a planar jet
,”
AIAA J.
32
,
317
323
(
1994
).
17.
Ghadi
,
S.
,
Esmailpour
,
K.
,
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A.
, “
Experimental study of formation and development of coherent vortical structures in pulsed turbulent impinging jet
,”
Exp. Therm. Fluid Sci.
74
,
382
389
(
2016
).
18.
Gordeyev
,
S.
, and
Thomas
,
F.
, “
Coherent structure in the turbulent planar jet. Part 1: Extraction of proper orthogonal decomposition eigenmodes and their self-similarity
,”
J. Fluid Mech.
414
,
145
194
(
2000
).
19.
Grosshans
,
H.
,
Szasz
,
R. Z.
, and
Funchs
,
L.
, “
Enhanced liquid gas mixing due to pulsating injection
,”
Comput. Fluids
107
,
196
204
(
2015
).
20.
Gurka
,
R.
,
Liberzon
,
A.
, and
Hetsroni
,
G.
, “
POD of vorticity fields: A method for spatial characterisation of coherent structures
,”
Int. J. Heat Fluid Flow
27
,
416
423
(
2006
).
21.
Han
,
B.
, and
Goldstein
,
R. J.
, “
Instantaneous energy separation in a free jet. Part I. Flow measurement and visualization
,”
Int. J. Heat Mass Transfer
46
,
3975
3981
(
2003
).
22.
Hellstrom
,
L. H. O.
, and
Smits
,
A. J.
, “
The energetic motions in turbulent pipe flows
,”
Phys. Fluids
26
,
125102
(
2014
).
23.
Hollworth
,
B. R.
, and
Durbin
,
M.
, “
Impingement cooling of electronics
,”
J. Heat Transfer
114
,
607
613
(
1992
).
24.
Hsu
,
C. M.
,
Jhan
,
W. C.
, and
Chang
,
Y. Y.
, “
Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate
,”
Heat Mass Transfer
56
,
143
160
(
2020
).
25.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
, “
The mechanics of an organised wave in turbulent shear flow
,”
J. Fluid Mech.
41
(
2
),
241
258
(
1970
).
26.
Hussain
,
A. K. M. F.
, and
Zaman
,
K. B. M. Q.
, “
Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics
,”
J. Fluid Mech.
101
(
3
),
493
544
(
1980
).
27.
Hwang
,
S. D.
, and
Cho
,
H. H.
, “
Effect of acoustic excitation positions on heat transfer and flow in axisymmetric impinging jet: Main jet excitation and shear layer excitation
,”
Int. J. Heat Fluid Flow
24
,
199
209
(
2003
).
28.
Katti
,
V.
, and
Prabhu
,
S. V.
, “
Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle
,”
Int. J. Heat Mass Transfer
51
(
17
),
4480
4495
(
2008
).
29.
Katti
,
V. V.
,
Yasawy
,
S. N.
, and
Prabhu
,
S. V.
, “
Local heat transfer distribution between smooth flat plate and impinging air jet from a circular nozzle at low Reynolds numbers
,”
Heat Mass Transfer
43
(
3
),
237
244
(
2011
).
30.
Kestin
,
J.
,
Maeder
,
P. F.
, and
Wang
,
H. E.
, “
Influence of turbulence on the transfer of heat from plates with and without a pressure gradient
,”
Int. J. Heat Mass Transfer
3
(
2
),
133
154
(
1961
).
31.
Kim
,
Y. H.
,
Cierpka
,
C.
, and
Werely
,
S.
, “
Flow field around a vibrating cantilever: Coherent structure eduction by continuous wavelet transform and proper orthogonal decomposition
,”
J. Fluid Mech.
669
,
584
606
(
2011
).
32.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
, “
The structure of turbulent boundary layer
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
33.
Liu
,
T.
, and
Sullivan
,
J. P.
, “
Heat transfer and flow structures in an excited circular impinging jet
,”
Int. J. Heat Mass Transfer
39
,
3695
3706
(
1996
).
34.
Lumley
,
J. L.
, “
The structure of inhomogeneous turbulence
,” in
Atmospheric Turbulence and Wave Propagation
, edited by
A. M.
Yaglom
and
V. I.
Tatarski
(
Nauka
,
Moscow
,
1967
), pp.
166
178
.
35.
Mishra
,
A.
,
Yadav
,
H.
,
Djenidi
,
L.
, and
Agrawal
,
A.
, “
Experimental study of flow characteristics of an oblique impinging jet
,”
Exp. Fluids
61
,
90
(
2020
).
36.
Mishra
,
A.
,
Yadav
,
H.
,
Djenidi
,
L.
, and
Agrawal
,
A.
, “
Effect of pulsation on the wall jet flow in the near region of an impinging jet
,”
Exp. Fluids
62
,
157
(
2021
).
37.
Narayanan
,
V.
,
Yagoobi
,
J. S.
, and
Page
,
R. H.
, “
An experimental study of the fluid mechanics and the heat transfer in an impinging slot jet flow
,”
Int. J. Heat Mass Transfer
47
(
8
),
1827
1845
(
2004
).
38.
Otani
,
Y.
,
Namiki
,
N.
, and
Emi
,
H.
, “
Removal of fine particles from smooth flat surfaces by consecutive pulse air jets
,”
Aerosol Sci. Technol.
23
(
4
),
665
673
(
1995
).
39.
Perrin
,
R.
,
Braza
,
M.
,
Cid
,
E.
,
Cazin
,
S.
,
Barthet
,
A.
,
Sevrain
,
A.
,
Mockett
,
C.
, and
Thiele
,
F.
, “
Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD
,”
Exp. Fluids
43
,
341
355
(
2007
).
40.
Pieris
,
S.
,
Zhang
,
X.
,
Yarusevych
,
S.
, and
Peterson
,
S. D.
, “
Evolution of coherent structures in a two-dimensional impinging jet
,” in
10th International Symposium on Turbulence and Shear Flow Phenomena
,
Chicago
, July 6–9,
2017
.
41.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
, “
Effect of flow pulsations on the cooling effectiveness of an impinging jet
,”
J. Heat Transfer
116
(
4
),
886
895
(
1994
).
42.
Sooraj
,
P.
,
Ramagya
,
M.
,
Khan
,
M.
,
Sharma
,
A.
, and
Agrawal
,
A.
, “
Effect of superhydrophobicity on the flow past a circular cylinder in various flow regimes
,”
J. Fluid Mech.
897
,
A21
(
2020
).
43.
Tang
,
S. L.
,
Djenidi
,
L.
,
Antonia
,
R. A.
, and
Zhou
,
Y.
, “
Comparison between velocity- and vorticity-based POD methods in a turbulent wake
,”
Exp. Fluids
56
,
169
(
2015
).
44.
Tummers
,
M. J.
,
Jacobse
,
J.
, and
Voorbrood
,
S. G. J.
, “
Turbulent flow in the near field of a round impinging jet
,”
Int. J. Heat Mass Transfer
54
(
23
),
4939
4948
(
2011
).
45.
Vejrazka
,
J.
,
Tihon
,
J.
,
Ph
,
M.
, and
Sobolik
,
V.
, “
Effect of an external excitation on the flow structure in a circular impinging jet
,”
Phys. Fluids
17
,
105102
(
2005
).
46.
Wallace
,
J. M.
, and
Brodkey
,
R. S.
, “
Reynolds stress and joint probability density distributions in the u-v plane of a turbulent channel flow
,”
Phys. Fluids
20
,
351
355
(
1977
).
47.
Wallace
,
J. M.
,
Brodkey
,
R. S.
, and
Eckelmann
,
H.
, “
The wall region in turbulent shear flow
,”
J. Fluid Mech.
54
,
39
48
(
1972
).
48.
Webb
,
B. W.
, and
Ma
,
C. F.
, “
Single-phase liquid jet impingement heat transfer
,”
Adv. Heat Transfer
26
,
105
217
(
1995
).
49.
Yadav
,
H.
,
Agrawal
,
A.
, and
Srivastava
,
A.
, “
Mixing and entrainment characteristics of a pulse jet
,”
Int. J. Heat Fluid Flow
61
,
749
761
(
2016
).
50.
Yadav
,
H.
, and
Agrawal
,
A.
, “
Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet
,”
Phys. Fluids
30
,
035107
(
2018
).
51.
Zaman
,
K. B. M. Q.
, and
Hussain
,
A. K. M. F.
, “
Turbulence suppression in free shear flows by controlled excitation
,”
J. Fluid Mech.
103
,
133
159
(
1981
).
52.
Zargarabadi
,
M. R.
,
Rezaei
,
E.
, and
Lafouraki
,
B. Y.
, “
Numerical analysis of turbulent flow and heat transfer of sinusoidal pulsed jet impinging on an asymmetrical concave surface
,”
Appl. Therm. Eng.
128
,
578
585
(
2018
).
53.
Zulkifli
,
R.
, and
Sopian
,
K.
, “
Studies on pulse jet impingement heat transfer: Flow profile and effect of pulse frequencies on heat transfer
,”
Int. J. Eng. Technol.
4
(
1
),
86
94
(
2007
).
You do not currently have access to this content.