We revisit the mechanism of viscous vortex reconnection by considering the collision of vortex rings over a range of initial collision angles and Reynolds numbers. While the overall reconnection process is similar to anti-parallel vortex reconnection, we find that collision angle exerts significant influence over the process, altering the evolution of various global and local quantities. The collision angle primarily manipulates the “pyramid” process, a recently identified stretching mechanism proposed by Moffatt and Kimura [“Towards a finite-time singularity of the Navier-Stokes equations Part 1. Derivation and analysis of dynamical system,” J. Fluid Mech., 861, 930–967 (2019)] to be a potential pathway for finite-time singularity of Euler’s equations, during the approach stage of the rings. However, the “pyramid” process is short-lived for viscous vortices. The present work shows that the “pyramid” process is arrested by parallelization of the colliding vortices, wherein contact of the colliding vortices halts their motion toward each other at the pyramid apex, allowing the rest of the vortex tube to “catch up,” breaking the pyramid structure. Parallelization marks the transition to a second phase of stretching, where the colliding vortices remain parallel. Vorticity amplification from pyramid stretching is significantly stronger than for its parallel counterpart, and is thus the dominant factor determining reconnection properties. Based upon the findings in this study, we conjecture that the parallelization process is the primary mechanism that prevents the finite-time singularity through the pyramid process. Critically, the Reynolds number scaling for the reconnection rate differs depending on the collision angle, which challenges the conjecture of universal Reynolds number scaling in the literature.

1.
J.
Koplik
and
H.
Levine
, “
Vortex reconnection in superfluid helium
,”
Phys. Rev. Lett.
71
,
1375
1378
(
1993
).
2.
G. P.
Bewley
,
M. S.
Paoletti
,
K. R.
Sreenivasan
, and
D. P.
Lathrop
, “
Characterization of reconnecting vortices in superfluid helium
,”
Proc. Nat. Acad. Sci. U. S. A.
105
,
13707
13710
(
2008
).
3.
M. V.
Melander
and
F.
Hussain
, “
Cross-linking of two antiparallel vortex tubes
,”
Phys. Fluids A
1
,
633
636
(
1989
).
4.
S.
Kida
and
M.
Takaoka
, “
Vortex Reconnection
,”
Annu. Rev. Fluid Mech.
26
,
169
189
(
1994
).
5.
F.
Hussain
and
K.
Duraisamy
, “
Mechanics of viscous vortex reconnection
,”
Phys. Fluids
23
,
021701
(
2011
).
6.
J.
Yao
and
F.
Hussain
, “
A physical model of turbulence cascade via vortex reconnection sequence and avalanche
,”
J. Fluid Mech.
883
,
A51
(
2020
).
7.
H.
Daryan
,
F.
Hussain
, and
J. P.
Hickey
, “
Aeroacoustic noise generation due to vortex reconnection
,”
Phys. Rev. Fluids
5
,
062702
(
2020
).
8.
R. M.
Kerr
and
F.
Hussain
, “
Simulation of vortex reconnection
,”
Phys. D
37
,
474
(
1989
).
9.
P.
McGavin
and
D. I.
Pontin
, “
Vortex line topology during vortex tube reconnection
,”
Phys. Rev. Fluids
3
,
054701
(
2018
).
10.
N. J.
Zabusky
and
M. V.
Melander
, “
Three-dimensional vortex tube reconnection: Morphology for orthogonally-offset tubes
,”
Phys. D
37
,
555
562
(
1989
).
11.
O. N.
Boratav
,
R. B.
Pelz
, and
N. J.
Zabusky
, “
Reconnection in orthogonally interacting vortex tubes: Direct numerical simulations and quantifications
,”
Phys. Fluids A
4
,
581
605
(
1992
).
12.
S.
Kida
,
M.
Takaoka
, and
F.
Hussein
, “
Reconnection of two vortex rings
,”
Phys. Fluids A
1
,
630
632
(
1989
).
13.
S.
Kida
,
M.
Takaoka
, and
F.
Hussain
, “
Collision of two vortex rings
,”
J. Fluid Mech.
230
,
583
646
(
1991
).
14.
P.
McGavin
and
D. I.
Pontin
, “
Reconnection of vortex tubes with axial flow
,”
Phys. Rev. Fluids
4
,
024701
(
2019
).
15.
H. K.
Moffatt
and
Y.
Kimura
, “
Towards a finite-time singularity of the Navier-Stokes equations Part 1. Derivation and analysis of dynamical system
,”
J. Fluid Mech.
861
,
930
967
(
2019
).
16.
H. K.
Moffatt
and
Y.
Kimura
, “
Towards a finite-time singularity of the Navier-Stokes equations. Part 2. Vortex reconnection and singularity evasion
,”
J. Fluid Mech.
870
,
R1
(
2019
).
17.
A. T. A. M.
de Waele
and
R. G. K. M.
Aarts
, “
Route to vortex reconnection
,”
Phys. Rev. Lett.
72
,
482
485
(
1994
).
18.
J.
Yao
and
F.
Hussain
, “
On singularity formation via viscous vortex reconnection
,”
J. Fluid Mech.
888
,
R2
(
2020
).
19.
J.
Yao
and
F.
Hussain
, “
Separation scaling for viscous vortex reconnection
,”
J. Fluid Mech.
900
,
R4
(
2020
).
20.
C. C.
Chu
,
C. T.
Wang
,
C. C.
Chang
,
R. Y.
Chang
, and
W. T.
Chang
, “
Head-on collision of two coaxial vortex rings: Experiment and computation
,”
J. Fluid Mech.
296
,
39
71
(
1995
).
21.
N. J.
Zabusky
,
O. N.
Boratav
,
R. B.
Pelz
,
M.
Gao
,
D.
Silver
, and
S. P.
Cooper
, “
Emergence of coherent patterns of vortex stretching during reconnection: A scattering paradigm
,”
Phys. Rev. Lett.
67
,
2469
2472
(
1991
).
22.
G.
Beardsell
,
L.
Dufresne
, and
G.
Dumas
, “
Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations
,”
Phys. Fluids
28
,
095103
(
2016
).
23.
R. H.
Hernández
and
E.
Monsalve
, “
Experimental observation of the collision of three vortex rings
,”
Fluid Dyn. Res.
47
,
035513
(
2015
).
24.
L. E.
Fraenkel
, “
Examples of steady vortex rings of small cross-section in an ideal fluid
,”
J. Fluid Mech.
51
,
119
135
(
1972
).
25.
J.
Norbury
, “
A family of steady vortex rings
,”
J. Fluid Mech.
57
,
417
431
(
1973
).
26.
D.
Buaria
,
E.
Bodenschatz
, and
A.
Pumir
, “
Vortex stretching and enstrophy production in high Reynolds number turbulence
,”
Phys. Rev. Fluids
5
,
104602
(
2020
).
27.
Q.
Ni
,
F.
Hussain
,
J.
Wang
, and
S.
Chen
, “
Analysis of Reynolds number scaling for viscous vortex reconnection
,”
Phys. Fluids
24
,
105102
(
2012
).
28.
A.
Pressley
, “
How much does a curve?” in Elementary Differential Geometry
,
Springer Undergraduate Mathematics Series
(
Springer
,
London
,
2010
).
29.
M. D.
Bustamante
and
R. M.
Kerr
, “
3D Euler about a 2D symmetry plane
,”
Phys. D
237
,
1912
1920
(
2008
).
30.
I.
Delbende
and
M.
Rossi
, “
The dynamics of a viscous vortex dipole
,”
Phys. Fluids
21
,
073605
(
2009
).
31.
R.
McKeown
,
R.
Ostilla-Mónico
,
A.
Pumir
,
M. P.
Brenner
, and
S. M.
Rubinstein
, “
Turbulence generation through an iterative cascade of the elliptical instability
,”
Sci. Adv.
6
,
eaaz2717
(
2020
).
32.
R.
McKeown
,
R.
Ostilla-Mónico
,
A.
Pumir
,
M. P.
Brenner
, and
S. M.
Rubinstein
, “
Cascade leading to the emergence of small structures in vortex ring collisions
,”
Phys. Rev. Fluids
3
,
124702
(
2018
).
33.
S.
Hormoz
and
M. P.
Brenner
, “
Absence of singular stretching of interacting vortex filaments
,”
J. Fluid Mech.
707
,
191
204
(
2012
).
34.
M. P.
Brenner
,
S.
Hormoz
, and
A.
Pumir
, “
Potential singularity mechanism for the Euler equations
,”
Phys. Rev. Fluids
1
,
084503
(
2016
).
You do not currently have access to this content.