In this paper, the Vogel–Escudier flow is studied at an aspect ratio of 2.5 and a Reynolds number range of 330–3000. An attempt is made to control the vortex breakdown bubbles using a thin rod in co- and counter-rotation cases. The flow is studied qualitatively using planar laser-induced fluorescence and quantitatively using particle image velocimetry measurements. In terms of swirl strength, defined as the ratio of Reynolds numbers of the disk and control rod, a complete suppression and subsequent reemergence of vortex breakdown bubbles is observed at 56 and 37, respectively. Counter-rotation shows a slight decrease until −150 and a periodic and aperiodic shedding of the vortices at −112 and −75. An attempt is made to explain the flow behavior by experimental and analytical means taking into consideration the azimuthal plane flow using the swirl decay mechanism. Further, experiments are performed for time varying co- and counter-rotations for various combinations of amplitude and frequency. The anomalous behavior at high frequencies of destabilization of vortices in co-rotation and a milder change in counter-rotation is observed.

1.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abacus Press
,
Tunbridge Wells
,
1984
).
2.
O.
Lucca-Negro
and
T.
O'doherty
, “
Vortex breakdown: A review
,”
Prog. Energy Combust. Sci.
27
,
431
481
(
2001
).
3.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
629
(
1962
).
4.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
559
(
1971
).
5.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
246
(
1978
).
6.
H.
Vogel
,
Experimentelle ergebnisse ueber die laminare stroemung in einem zylindrischen gehaeuse mit darin rotierender scheibe
(
Max Planck Institute
,
1968
), Vol.
6
.
7.
M.
Escudier
, “
Observations of the flow produced in a cylindrical container by a rotating endwall
,”
Exp. Fluids
2
,
189
196
(
1984
).
8.
J.
Lopez
and
A.
Perry
, “
Axisymmetric vortex breakdown. Part 3 onset of periodic flow and chaotic advection
,”
J. Fluid Mech.
234
,
449
471
(
1992
).
9.
M.
Kurosaka
,
C.
Cain
,
S.
Srigrarom
,
J.
Wimer
,
D.
Dabiri
,
W.
Johnson
 III
,
J.
Hatcher
,
B.
Thompson
,
M.
Kikuchi
,
K.
Hirano
 et al., “
Azimuthal vorticity gradient in the formative stages of vortex breakdown
,”
J. Fluid Mech.
569
,
1–28
(
2006
).
10.
A.
Spohn
,
M.
Mory
, and
E.
Hopfinger
, “
Observations of vortex breakdown in an open cylindrical container with a rotating bottom
,”
Exp. Fluids
14
,
70
77
(
1993
).
11.
J.
Lopez
,
F.
Marques
,
A.
Hirsa
, and
R.
Miraghaie
, “
Symmetry breaking in free-surface cylinder flows
,”
J. Fluid Mech.
502
,
99
126
(
2004
).
12.
E.
Serre
and
P.
Bontoux
, “
Vortex breakdown in a cylinder with a rotating bottom and a flat stress-free surface
,”
Int. J. Heat Fluid Flow
28
,
229
248
(
2007
).
13.
M.
Piva
and
E.
Meiburg
, “
Steady axisymmetric flow in an open cylindrical container with a partially rotating bottom wall
,”
Phys. Fluids
17
,
063603
(
2005
).
14.
P.
Yu
,
T.
Lee
,
Y.
Zeng
, and
H.
Low
, “
Characterization of flow behavior in an enclosed cylinder with a partially rotating end wall
,”
Phys. Fluids
19
,
057104
(
2007
).
15.
D. T.
Valentine
and
C. C.
Jahnke
, “
Flows induced in a cylinder with both end walls rotating
,”
Phys. Fluids
6
,
2702
2710
(
1994
).
16.
V. L.
Okulov
,
J. N.
Sørensen
, and
L. K.
Voigt
, “
Vortex scenario and bubble generation in a cylindrical cavity with rotating top and bottom
,”
Eur. J. Mech.-B
24
,
137
148
(
2005
).
17.
J.
Pereira
and
J.
Sousa
, “
Confined vortex breakdown generated by a rotating cone
,”
J. Fluid Mech.
385
,
287
323
(
1999
).
18.
S.
Bhattacharyya
and
A.
Pal
, “
Generation (or degeneration) of a separation bubble in a liquid-filled cylinder through spin-up (or spin-down) process
,”
J. Appl. Mech.
66
,
1023
1026
(
1999
).
19.
T.
Mullin
,
J.
Kobine
,
S.
Tavener
, and
K.
Cliffe
, “
On the creation of stagnation points near straight and sloped walls
,”
Phys. Fluids
12
,
425
431
(
2000
).
20.
I. V.
Naumov
,
B. R.
Sharifullin
,
A. Y.
Kravtsova
, and
V. N.
Shtern
, “
Velocity jumps and the Moffatt eddy in two-fluid swirling flows
,”
Exp. Therm. Fluid Sci.
116
,
110116
(
2020
).
21.
I. V.
Naumov
,
S. G.
Skripkin
, and
V. N.
Shtern
, “
Counterflow slip in a two-fluid whirlpool
,”
Phys. Fluids
33
,
061705
(
2021
).
22.
Y. H.
Alahmadi
,
S. A.
Awadh
, and
A. F.
Nowakowski
, “
Simulation of swirling flow with a vortex breakdown using modified shear stress transport model
,”
Ind. Eng. Chem. Res.
60
,
6016
6026
(
2021
).
23.
K.
Fujimura
,
H.
Yoshizawa
,
R.
Iwatsu
,
H. S.
Koyama
, and
J. M.
Hyun
, “
Velocity measurements of vortex breakdown in an enclosed cylinder
,”
J. Fluids Eng.
123
,
604
611
(
2001
).
24.
H. S.
Husain
,
V.
Shtern
, and
F.
Hussain
, “
Control of vortex breakdown by addition of near-axis swirl
,”
Phys. Fluids
15
,
271
279
(
2003
).
25.
M. A.
Herrada
and
V.
Shtern
, “
Control of vortex breakdown by temperature gradients
,”
Phys. Fluids
15
,
3468
3477
(
2003
).
26.
M. A.
Herrada
and
V.
Shtern
, “
Vortex breakdown control by adding near-axis swirl and temperature gradients
,”
Phys. Rev. E
68
,
041202
(
2003
).
27.
J.
Lopez
,
Y.
Cui
,
F.
Marques
, and
T.
Lim
, “
Quenching of vortex breakdown oscillations via harmonic modulation
,”
J. Fluid Mech.
599
,
441
(
2008
).
28.
D. L.
Jacono
,
J. N.
Sørensen
,
M. C.
Thompson
, and
K.
Hourigan
, “
Control of vortex breakdown in a closed cylinder with a small rotating rod
,”
J. Fluids Struct.
24
,
1278
1283
(
2008
).
29.
M.-Z. P.
Ismadi
,
P.
Meunier
,
A.
Fouras
, and
K.
Hourigan
, “
Experimental control of vortex breakdown by density effects
,”
Phys. Fluids
23
,
034104
(
2011
).
30.
V. N.
Shtern
,
M.
del Mar Torregrosa
, and
M. A.
Herrada
, “
Effect of swirl decay on vortex breakdown in a confined steady axisymmetric flow
,”
Phys. Fluids
24
,
043601
(
2012
).
31.
L.
Carrion
,
I.
Naumov
,
B.
Sharifullin
,
M.
Herrada
, and
V.
Shtern
, “
Mechanism of disappearance of vortex breakdown in a confined flow
,”
J. Eng. Thermophys.
29
,
49
66
(
2020
).
32.
K.
Poddar
,
N.
Kumar
, and
D. M.
Sharma
, “
Vortex breakdown in a closed cylinder with rotating bottom disk
,” in
5th International Conference on Experimental Fluid Mechanics
, Munich, Germany, July 2–4 (
2018
).
33.
M.
Sharma
and
A.
Sameen
, “
On the correlation between vortex breakdown bubble and planar helicity in Vogel–Escudier flow
,”
J. Fluid Mech.
888
,
A6
(
2020
).
34.
N.
Kumar
, “
Vortex breakdown in confined flow inside a closed cylinder with rotating bottom disk
,” Master's thesis (
Indian Institute of Technology
,
Kanpur
,
2017
).
35.
A.
Volk
and
C. J.
Kähler
, “
Density model for aqueous glycerol solutions
,”
Exp. Fluids
59
,
75
(
2018
).
36.
M. C.
Thompson
and
K.
Hourigan
, “
The sensitivity of steady vortex breakdown bubbles in confined cylinder flows to rotating lid misalignment
,”
J. Fluid Mech.
496
,
129
(
2003
).
37.
R.
Ranjan
, “
Control of vortex breakdown in confined cylindrical flow
,” Master's thesis (
Indian Institute of Technology
,
Kanpur
,
2019
).
38.
A.
Spohn
,
M.
Mory
, and
E.
Hopfinger
, “
Experiments on vortex breakdown in a confined flow generated by a rotating disc
,”
J. Fluid Mech.
370
,
73
99
(
1998
).
39.
F.
Sotiropoulos
,
D. R.
Webster
, and
T. C.
Lackey
, “
Experiments on Lagrangian transport in steady vortex-breakdown bubbles in a confined swirling flow
,”
J. Fluid Mech.
466
,
215
(
2002
).
40.
K.
Hourigan
,
L.
Graham
, and
M.
Thompson
, “
Spiral streaklines in pre-vortex breakdown regions of axisymmetric swirling flows
,”
Phys. Fluids
7
,
3126
3128
(
1995
).
41.
M.
Brøns
,
W. Z.
Shen
,
J. N.
Sørensen
, and
W. J.
Zhu
, “
The influence of imperfections on the flow structure of steady vortex breakdown bubbles
,”
J. Fluid Mech.
578
,
453
(
2007
).
42.
F.
Sotiropoulos
and
Y.
Ventikos
, “
The three-dimensional structure of confined swirling flows with vortex breakdown
,”
J. Fluid Mech.
426
,
155
(
2001
).
43.
P.
Holmes
, “
Some remarks on chaotic particle paths in time-periodic, three-dimensional swirling flows
,”
Contemp. Math.
28
,
393
404
(
1984
).
44.
C.
Cabeza
,
G.
Sarasúa
,
A. C.
Martí
,
I.
Bove
,
S.
Varela
,
G.
Usera
, and
A.
Vernet
, “
Influence of coaxial cylinders on the vortex breakdown in a closed flow
,”
Eur. J. Mech.-B
29
,
201
207
(
2010
).
45.
B. H.
Jørgensen
,
J. N.
Sørensen
, and
N.
Aubry
, “
Control of vortex breakdown in a closed cylinder with a rotating lid
,”
Theor. Comput. Fluid Dyn.
24
,
483
496
(
2010
).
46.
K. E.
Davis
, “
Three-dimensional, time-dependent spectral element simulations of a thermocapillary liquid bridge with magnetic stabilization
,” Master's thesis (
Rice University
,
2011
).
47.
L.
Mununga
,
D. L.
Jacono
,
J. N.
Sorensen
,
T.
Leweke
,
M. C.
Thompson
, and
K.
Hourigan
, “
Control of confined vortex breakdown with partial rotating lids
,”
J. Fluid Mech.
738
,
5
33
(
2014
).
48.
J.
Lopez
, “
Axisymmetric vortex breakdown part I. Confined swirling flow
,”
J. Fluid Mech.
221
,
533
552
(
1990
).
49.
G.
Brown
and
J.
Lopez
, “
Axisymmetric vortex breakdown part 2. Physical Mechanisms
,”
J. Fluid Mech.
221
,
553
576
(
1990
).
You do not currently have access to this content.