Aneurysms of saccular shape are usually associated with a slow, almost stagnant blood flow, as well as a consequent emergence of blood clots. Despite the practical importance, there is a lack of computational models that could combine platelet aggregation, precise biorheology, and blood plasma coagulation into one efficient framework. In the present study, we address both the physical and biochemical effects during thrombosis in aneurysms and blood recirculation zones. We use continuum description of the system and partial differential equation-based model that account for fluid dynamics, platelet transport, adhesion and aggregation, and biochemical cascades of plasma coagulation. The study is focused on the role of transport and accumulation of blood cells, including contact interactions between platelets and red blood cells (RBCs), coagulation cascade triggered by activated platelets, and the hematocrit-dependent blood rheology. We validated the model against known experimental benchmarks for in vitro thrombosis. The numerical simulations indicate an important role of RBCs in spatial propagation and temporal dynamics of the aneurysmal thrombus growth. The local hematocrit determines the viscosity of the RBC-rich regions. As a result, a high hematocrit slows down flow circulation and increases the presence of RBCs in the aneurysm. The intensity of the flow in the blood vessel associated with the aneurysm also affects platelet distribution in the system, as well as the steady shape of the thrombus.

1.
S. P.
Jackson
, “
Arterial thrombosis-insidious, unpredictable and deadly
,”
Nat. Med.
17
,
1423
1436
(
2011
).
2.
B.
Furie
and
B. C.
Furie
, “
Thrombus formation in vivo
,”
J. Clin. Invest.
115
,
3355
3362
(
2005
).
3.
A.
Celi
,
G.
Merrill-Skoloff
,
P.
Gross
,
S.
Falati
,
D. S.
Sim
,
R.
Flaumenhaft
,
B.
Furie
, and
B.
Furie
, “
Thrombus formation: Direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscope
,”
J. Thromb. Haemostasis
1
,
60
68
(
2003
).
4.
I. H.
Jaffer
,
J. C.
Fredenburgh
, and
J. H. J. I.
Weitz
, “
Medical device-induced thrombosis: What causes it and how can we prevent it?
,”
J. Thromb. Haemostasis
13
,
S72
S81
(
2015
).
5.
W.-T.
Wu
,
N.
Aubry
,
M.
Massoudi
, and
J. F.
Antaki
, “
Transport of platelets induced by red blood cells based on mixture theory
,”
Int. J. Eng. Sci.
118
,
16
27
(
2017
).
6.
J.
Zilberman-Rudenko
,
J. L.
Sylman
,
H. H. S.
Lakshmanan
,
O. J. T.
McCarty
, and
J.
Maddala
, “
Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network
,”
Cell. Mol. Bioeng.
10
,
16
29
(
2017
).
7.
A. L.
Fogelson
and
K. B.
Neeves
, “
Fluid mechanics of blood clot formation
,”
Annu. Rev. Fluid Mech.
47
,
377
403
(
2015
).
8.
A. V.
Belyaev
,
M. A.
Panteleev
, and
F. I.
Ataullakhanov
, “
Threshold of microvascular occlusion: Injury size defines the thrombosis scenario
,”
Biophys. J.
109
,
450
456
(
2015
).
9.
A.
Bouchnita
,
T.
Galochkina
,
P.
Kurbatova
,
P.
Nony
, and
V.
Volpert
, “
Conditions of microvessel occlusion for blood coagulation in flow
,”
Int. J. Numer. Methods Biomed. Eng.
33
,
e2850
(
2017
).
10.
A.
Bouchnita
,
A.
Tosenberger
, and
V.
Volpert
, “
On the regimes of blood coagulation
,”
Appl. Math. Lett.
51
,
74
79
(
2016
).
11.
T. J.
Stalker
,
E. A.
Traxler
,
J.
Wu
,
K. M.
Wannemacher
,
S. L.
Cermignano
,
R.
Voronov
,
S. L.
Diamond
, and
L. F.
Brass
, “
Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network
,”
Blood
121
,
1875
1885
(
2013
).
12.
S. P.
Jackson
,
W. S.
Nesbitt
, and
E.
Westein
, “
Dynamics of platelet thrombus formation
,”
J. Thromb. Haemostasis
7
,
17
20
(
2009
).
13.
L. F.
Brass
and
S. L.
Diamond
, “
Transport physics and biorheology in the setting of hemostasis and thrombosis
,”
J. Thromb. Haemostasis
14
,
906
917
(
2016
).
14.
M.
Sato
and
N.
Ohshima
, “
Effect of wall shear rate on thrombogenesis in microvessels of the rat mesentery
,”
Microvasc. Res.
66
,
941
949
(
1990
).
15.
N. A.
Podoplelova
,
A. N.
Sveshnikova
,
Y. N.
Kotova
,
A.
Eckly
,
N.
Receveur
,
D. Y.
Nechipurenko
,
S. I.
Obydennyi
,
I. I.
Kireev
,
C.
Gachet
,
F. I.
Ataullakhanov
,
P. H.
Mangin
, and
M. A.
Panteleev
, “
Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting
,”
Blood
128
,
1745
1755
(
2016
).
16.
F.
Swieringa
,
H. M.
Spronk
,
J. W.
Heemskerk
, and
P. E.
van der Meijden
, “
Integrating platelet and coagulation activation in fibrin clot formation
,”
Res. Pract. Thromb. Haemostasis
2
,
450
460
(
2018
).
17.
K.
Leiderman
and
A. L.
Fogelson
, “
Grow with the flow: A spatial–temporal model of platelet deposition and blood coagulation under flow
,”
Math. Med. Biol.
28
,
47
84
(
2011
).
18.
M. A.
Panteleev
,
A. N.
Balandina
,
E. N.
Lipets
,
M. V.
Ovanesov
, and
F. I.
Ataullakhanov
, “
Task-oriented modular decomposition of biological networks: Trigger mechanism in blood coagulation
,”
Biophys. J.
98
,
1751
1761
(
2010
).
19.
E.
Kenne
,
K. F.
Nickel
,
A. T.
Long
,
T. A.
Fuchs
,
E. X.
Stavrou
,
F. R.
Stahl
, and
T.
Renné
, “
Factor XII: A novel target for safe prevention of thrombosis and inflammation
,”
J. Intern. Med.
278
,
571
585
(
2015
).
20.
A. M.
Shibeko
,
E. S.
Lobanova
,
M. A.
Panteleev
, and
F. I.
Ataullakhanov
, “
Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa
,”
BMC Syst. Biol.
4
,
5
(
2010
).
21.
S.
Einav
and
D.
Bluestein
, “
Dynamics of blood flow and platelet transport in pathological vessels
,”
Ann. N. Y. Acad. Sci.
1015
,
351
366
(
2004
).
22.
J. M.
Ramstack
,
L.
Zuckerman
, and
L. F.
Mockros
, “
Shear-induced activation of platelets
,”
J. Biomech.
12
,
113
125
(
1979
).
23.
M.
Nobili
,
J.
Sheriff
,
U.
Morbiducci
,
A.
Redaelli
, and
D.
Bluestein
, “
Platelet activation due to hemodynamic shear stresses: Damage accumulation model and comparison to in vitro measurements
,”
ASAIO J.
54
,
64
72
(
2008
).
24.
W.
Zhang
,
W.
Deng
,
L.
Zhou
,
Y.
Xu
,
W.
Yang
,
X.
Liang
,
Y.
Wang
,
J. D.
Kulman
,
X. F.
Zhang
, and
R.
Li
, “
Identification of a juxtamembrane mechanosensitive domain in the platelet mechanosensor glycoprotein Ib-IX complex
,”
Blood
125
,
562
569
(
2015
).
25.
Y.
Chen
,
L. A.
Ju
,
F.
Zhou
,
J.
Liao
,
L.
Xue
,
Q. P.
Su
,
D.
Jin
,
Y.
Yuan
,
H.
Lu
,
S. P.
Jackson
, and
C.
Zhu
, “
An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation
,”
Nat. Mater.
18
,
760
769
(
2019
).
26.
C. E.
Hansen
,
Y.
Qiu
,
O. J.
McCarty
, and
W. A.
Lam
, “
Platelet mechanotransduction
,”
Annu. Rev. Biomed. Eng.
20
,
253
275
(
2018
).
27.
S. W.
Schneider
,
S.
Nuschele
,
A.
Wixforth
,
C.
Gorzelanny
,
A.
Alexander-Katz
,
R. R.
Netz
, and
M. F.
Schneider
, “
Shear-induced unfolding triggers adhesion of von Willebrand factor fibers
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
7899
7903
(
2007
).
28.
S. P.
Jackson
, “
The growing complexity of platelet aggregation
,”
Blood
109
,
5087
5095
(
2007
).
29.
M.
Merten
and
P.
Thiagarajan
, “
P-selectin expression on platelets determines size and stability of platelet aggregates
,”
Circulation
102
,
1931
1936
(
2000
).
30.
S.-H.
Yun
,
E.-H.
Sim
,
R.-Y.
Goh
,
J.-I.
Park
, and
J.-Y.
Han
, “
Platelet activation: The mechanisms and potential biomarkers
,”
BioMed Res. Int.
2016
,
9060143
.
31.
L.
Mountrakis
,
E.
Lorenz
,
O.
Malaspinas
,
S.
Alowayyed
,
B.
Chopard
, and
A. G.
Hoekstra
, “
Parallel performance of an IB-LBM suspension simulation framework
,”
J. Comput. Sci.
9
,
45
50
(
2015
).
32.
A. M.
Robertson
,
A.
Sequeira
, and
R. G.
Owens
, “
Rheological models for blood
,” in
Cardiovascular Mathematics
(
Springer
,
2009
), pp.
211
241
.
33.
C.
Klatt
,
I.
Krüger
,
S.
Zey
,
K.-J.
Krott
,
M.
Spelleken
,
N. S.
Gowert
,
A.
Oberhuber
,
L.
Pfaff
,
W.
Luckstadt
,
K.
Jurk
,
M.
Schaller
,
H.
Al-Hasani
,
J.
Schrader
,
S.
Massberg
,
K.
Stark
,
H.
Schelzig
,
M.
Kelm
, and
M.
Elvers
, “
Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis
,”
J. Clin. Invest.
128
,
3906
(
2018
).
34.
J. W.
Weisel
and
R. I.
Litvinov
, “
Red blood cells: The forgotten player in hemostasis and thrombosis
,”
J. Thromb. Haemostasis
17
,
271
282
(
2019
).
35.
J. R.
Byrnes
and
A. S.
Wolberg
, “
Red blood cells in thrombosis
,”
Blood
130
,
1795
1799
(
2017
).
36.
R. I.
Litvinov
and
J. W.
Weisel
, “
Role of red blood cells in haemostasis and thrombosis
,”
ISBT Sci. Ser.
12
,
176
183
(
2017
).
37.
J.
Valles
,
M.
Santos
,
J.
Aznar
,
A.
Marcus
,
V.
Martinez-Sales
,
M.
Portoles
,
M.
Broekman
, and
L.
Safier
, “
Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment
,”
Blood
78
,
154
162
(
1991
).
38.
J.
Valles
,
M. T.
Santos
,
J.
Aznar
,
M.
Martinez
,
A.
Moscardo
,
M.
Pinon
,
M. J.
Broekman
, and
A. J.
Marcus
, “
Platelet-erythrocyte interactions enhance αIIbβ3 integrin receptor activation and p-selectin expression during platelet recruitment: Down-regulation by aspirin ex vivo
,”
Blood
99
,
3978
3984
(
2002
).
39.
S. L.
Diamond
, “
Systems analysis of thrombus formation
,”
Circ. Res.
118
,
1348
1362
(
2016
).
40.
J.
Stone
,
P.
Hangge
,
H.
Albadawi
,
A.
Wallace
,
F.
Shamoun
,
M. G.
Knuttien
,
S.
Naidu
, and
R.
Oklu
, “
Deep vein thrombosis: Pathogenesis, diagnosis, and medical management
,”
Cardiovasc. Diagn. Ther.
7
,
S276
(
2017
).
41.
E. V.
Dydek
and
E. L.
Chaikof
, “
Simulated thrombin responses in venous valves
,”
J. Vasc. Surg.: Venous Lymphatic Disord.
4
,
329
335
(
2016
).
42.
M.
Lehmann
,
R. M.
Schoeman
,
P. J.
Krohl
,
A. M.
Wallbank
,
J. R.
Samaniuk
,
M.
Jandrot-Perrus
, and
K. B.
Neeves
, “
Platelets drive thrombus propagation in a hematocrit and glycoprotein vi-dependent manner in an in vitro venous thrombosis model
,”
Arterioscler., Thromb., Vasc. Biol.
38
,
1052
1062
(
2018
).
43.
R.
Ouared
,
B.
Chopard
,
B.
Stahl
,
D.
Rüfenacht
,
H.
Yilmaz
, and
G.
Courbebaisse
, “
Thrombosis modeling in intracranial aneurysms: A lattice Boltzmann numerical algorithm
,”
Comput. Phys. Commun.
179
,
128
131
(
2008
).
44.
J. K. W.
Chesnutt
and
H.-C.
Han
, “
Computational simulation of platelet interactions in the initiation of stent thrombosis due to stent malapposition
,”
Phys. Biol.
13
,
016001
(
2016
).
45.
A. S.
Bedekar
,
K.
Pant
,
Y.
Ventikos
, and
S.
Sundaram
, “
A computational model combining vascular biology and haemodynamics for thrombosis prediction in anatomically accurate cerebral aneurysms,” Food Bioprod.
Process.
83
,
118
126
(
2005
).
46.
W. S.
Nesbitt
,
E.
Westein
,
F. J.
Tovar-Lopez
,
E.
Tolouei
,
A.
Mitchell
,
J.
Fu
,
J.
Carberry
,
A.
Fouras
, and
S. P.
Jackson
, “
A shear gradient-dependent platelet aggregation mechanism drives thrombus formation
,”
Nat. Med.
15
,
665
673
(
2009
).
47.
D. G.
Katritsis
,
A.
Theodorakakos
,
I.
Pantos
,
A.
Andriotis
,
E. P.
Efstathopoulos
,
G.
Siontis
,
N.
Karcanias
,
S.
Redwood
, and
M.
Gavaises
, “
Vortex formation and recirculation zones in left anterior descending artery stenoses: Computational fluid dynamics analysis
,”
Phys. Med. Biol.
55
,
1395
1411
(
2010
).
48.
A. J.
Reininger
,
U.
Heinzmann
,
C. B.
Reininger
,
P.
Friedrich
, and
L. J.
Wurzinger
, “
Flow mediated fibrin thrombus formation in an endotheleium-lined model of arterial branching
,”
Thromb. Res.
74
,
629
641
(
1994
).
49.
B. A.
Herbig
and
S. L.
Diamond
, “
Thrombi produced in stagnation point flows have a core–shell structure
,”
Cell. Mol. Bioeng.
10
,
515
521
(
2017
).
50.
R.
Méndez Rojano
,
S.
Mendez
, and
F.
Nicoud
, “
Introducing the procoagulant contact system in the numerical assessment of device-related thrombosis
,”
Biomech. Model. Mechanobiol.
17
,
815
826
(
2018
).
51.
P. F.
Costa
,
H. J.
Albers
,
J. E. A.
Linssen
,
H. H. T.
Middelkamp
,
L.
van der Hout
,
R.
Passier
,
A.
van den Berg
,
J.
Malda
, and
A. D.
van der Meer
, “
Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data
,”
Lab Chip
17
,
2785
(
2017
).
52.
A.
Javadzadegan
,
A. S. C.
Yong
,
M.
Chang
,
A. C. C.
Ng
,
J.
Yiannikas
,
M. K. C.
Ng
,
M.
Behnia
, and
L.
Kritharides
, “
Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries
,”
Am. J. Physiol.: Heart Circ. Physiol.
304
,
H559
H566
(
2013
).
53.
B.
Chopard
,
R.
Ouared
, and
D.
Rufenacht
, “
A lattice Boltzmann simulation of clotting in stented aneursysms and comparison with velocity or shear rate reductions
,”
Math. Comput. Simul.
72
,
108
112
(
2006
).
54.
B.
Chopard
,
R.
Ouared
,
D.
Ruefenacht
, and
H.
Yilmax
, “
Lattice Boltzmann modeling of thrombosis in giant aneurysms
,”
Int. J. Mod. Phys. C
18
,
712
(
2007
).
55.
Y.
Ventikos
,
T. J.
Bowker
,
P. N.
Watton
, and
N. M. P.
Kakalis
, “
Risk evaluation and interventional planning for cerebral aneurysms: Computational models for growth, coiling and thrombosis
,”
Int. J. Comput. Fluid Dyn.
23
,
595
607
(
2009
).
56.
A.
Belyaev
,
J.
Dunster
,
J.
Gibbins
,
M.
Panteleev
, and
V.
Volpert
, “
Modelling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones
,”
Phys. Life Rev.
26–27
,
57
95
(
2018
).
57.
W.-T.
Wu
,
M. A.
Jamiolkowski
,
W. R.
Wagner
,
N.
Aubry
,
M.
Massoudi
, and
J. F.
Antaki
, “
Multi-constituent simulation of thrombus deposition
,”
Sci. Rep.
7
,
42720
(
2017
).
58.
M. O.
Bernabeu
,
Y.
Lu
,
O.
Abu-Qamar
,
L. P.
Aiello
, and
J. K.
Sun
, “
Estimation of diabetic retinal microaneurysm perfusion parameters based on computational fluid dynamics modeling of adaptive optics scanning laser ophthalmoscopy
,”
Front. Physiol.
9
,
989
(
2018
).
59.
E.
Ezra
,
E.
Keinan
,
Y.
Mandel
,
M. E.
Boulton
, and
Y.
Nahmias
, “
Non-dimensional analysis of retinal microaneurysms: Critical threshold for treatment
,”
Integr. Biol.
5
,
474
480
(
2013
).
60.
A.
Bouchnita
,
T.
Galochkina
, and
V.
Volpert
, “
Influence of antithrombin on the regimes of blood coagulation: Insights from the mathematical model
,”
Acta Biotheor.
64
,
327
342
(
2016
).
61.
W.-T.
Wu
,
Y.
Li
,
N.
Aubry
,
M.
Massoudi
, and
J. F.
Antaki
, “
Numerical simulation of red blood cell-induced platelet transport in saccular aneurysms
,”
Appl. Sci.
7
,
484
(
2017
).
62.
H.
Jasak
,
A.
Jemcov
,
Z.
Tukovic
 et al, “
Openfoamml: A c++ library for complex physics simulations
,” in
Proceedings of International Workshop on Coupled Methods in Numerical Dynamics
(
IUC Dubrovnik, Croatia
,
2007
), Vol.
1000
, pp.
1
20
.
63.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
64.
D. Y.
Nechipurenko
,
N.
Receveur
,
A. O.
Yakimenko
,
T. O.
Shepelyuk
,
A. A.
Yakusheva
,
R. R.
Kerimov
,
S. I.
Obydennyy
,
A.
Eckly
,
C.
Léon
,
C.
Gachet
,
E. L.
Grishchuk
,
F. I.
Ataullakhanov
,
P. H.
Mangin
, and
M. A.
Panteleev
, “
Clot contraction drives the translocation of procoagulant platelets to thrombus surface
,”
Arterioscler., Thromb., Vasc. Biol.
39
,
37
47
(
2019
).
65.
A.
Bouchnita
,
P.
Miossec
,
A.
Tosenberger
, and
V.
Volpert
, “
Modeling of the effects of IL-17 and TNF-α on endothelial cells and thrombus growth
,”
C. R. Biol.
340
,
456
473
(
2017
).
66.
J. O.
Taylor
,
K. P.
Witmer
,
T.
Neuberger
,
B. A.
Craven
,
R. S.
Meyer
,
S.
Deutsch
, and
K. B.
Manning
, “
In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses
,”
J. Biomech. Eng.
136
,
071012
(
2014
).
67.
L.
Yang
,
T.
Neuberger
, and
K. B.
Manning
, “
In vitro real-time magnetic resonance imaging for quantification of thrombosis
,”
Magn. Reson. Mater. Phys., Biol., Med.
34
,
285
211
(
2021
).
68.
W.-T.
Wu
,
N.
Aubry
,
J. F.
Antaki
, and
M.
Massoudi
, “
Simulation of blood flow in a sudden expansion channel and a coronary artery
,”
J. Comput. Appl. Math.
376
,
112856
(
2020
).
69.
M. D.
Nisio
,
T.
Barbui
,
L. D.
Gennaro
,
G.
Borrelli
,
G.
Finazzi
,
R.
Landolfi
,
G.
Leone
,
R.
Marfisi
,
E.
Porreca
,
M.
Ruggeri
 et al, “
The haematocrit and platelet target in polycythemia vera
,”
Br. J. Haematol.
136
,
249
259
(
2007
).
70.
H.
Li
,
K.
Sampani
,
X.
Zheng
,
D. P.
Papageorgiou
,
A.
Yazdani
,
M. O.
Bernabeu
,
G. E.
Karniadakis
, and
J. K.
Sun
, “
Predictive modelling of thrombus formation in diabetic retinal microaneurysms
,”
R. Soc. Open Sci.
7
,
201102
(
2020
).
71.
K.
Gester
,
I.
Lüchtefeld
,
M.
Büsen
,
S.
Sonntag
,
T.
Linde
,
U.
Steinseifer
, and
G.
Cattaneo
, “
In vitro evaluation of intra-aneurysmal, flow-diverter-induced thrombus formation: A feasibility study
,”
Am. J. Neuroradiology
37
,
490
496
(
2016
).
72.
P.
Zhang
,
L.
Zhang
,
M. J.
Slepian
,
Y.
Deng
, and
D.
Bluestein
, “
A multiscale biomechanical model of platelets: Correlating with in-vitro results
,”
J. Biomech.
50
,
26
33
(
2017
).
73.
S.
Sohrabi
and
Y.
Liu
, “
A cellular model of shear-induced hemolysis
,”
Artif. Organs
41
,
E80
E91
(
2017
).
74.
A.
Yazdani
,
H.
Li
,
J. D.
Humphrey
, and
G. E.
Karniadakis
, “
A general shear-dependent model for thrombus formation
,”
PLoS Comput. Biol.
13
,
e1005291
(
2017
).
75.
A.
Bouchnita
and
V.
Volpert
, “
A multiscale model of platelet-fibrin thrombus growth in the flow
,”
Comput. Fluids
184
,
10
20
(
2019
).
76.
A. V.
Belyaev
, “
Long ligands reinforce biological adhesion under shear flow
,”
Phys. Rev. E
97
,
042407
(
2018
).
77.
A.
Wufsus
,
N.
Macera
, and
K.
Neeves
, “
The hydraulic permeability of blood clots as a function of fibrin and platelet density
,”
Biophys. J.
104
,
1812
1823
(
2013
).
78.
Y. V.
Krasotkina
,
E. I.
Sinauridze
, and
F. I.
Ataullakhanov
, “
Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion
,”
Biochim. Biophys. Acta, Gen. Subj.
1474
,
337
345
(
2000
).
79.
A.
Bouchnita
,
K.
Terekhov
,
P.
Nony
,
Y.
Vassilevski
, and
V.
Volpert
, “
A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions
,”
PLoS One
15
,
e0235392
(
2020
).
80.
T. A.
Springer
, “
von Willebrand factor, Jedi knight of the bloodstream
,”
Blood
124
,
1412
1425
(
2014
).
81.
N.
Begent
and
G. V. R.
Born
, “
Growth rate in vivo of platelet thrombi, produced by iontophoresis of ADP, as a function of mean blood flow velocity
,”
Nature
227
,
926
930
(
1970
).
82.
P. D.
Richardson
, “
Effect of blood flow velocity on growth rate of platelet thrombi
,”
Nature
245
,
103
104
(
1973
).
83.
G. V. R.
Born
and
P. D.
Richardson
, “
Activation time of blood platelets
,”
J. Membr. Biol.
57
,
87
90
(
1980
).
84.
H. R.
Baumgartner
, “
The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi
,”
Microvasc. Res.
5
,
167
179
(
1973
).
85.
V. T.
Turitto
,
H. J.
Weiss
, and
H. R.
Baumgartner
, “
The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood
,”
Microvasc. Res.
19
,
352
365
(
1980
).
86.
V. T.
Turitto
and
H. R.
Baumgartner
, “
Platelet interaction with subendothelium in a perfusion systemml: Physical role of red blood cells
,”
Microvasc. Res.
9
,
335
344
(
1975
).
87.
V. T.
Turitto
and
H. R.
Baumgartner
, “
Platelet interaction with subendothelium in flowing rabbit blood: Effect of blood shear rate
,”
Microvasc. Res.
17
,
38
54
(
1979
).
88.
M.
Sato
and
N.
Ohshima
, “
Hemodynamics at stenoses formed by growing platelet thrombi in mesenteric microvasculature of rat
,”
Microvasc. Res.
31
,
66
76
(
1986
).
89.
K.-E.
Arfors
,
J. S.
Cockburn
, and
J. F.
Gross
, “
Measurement of growth rate of laser-induced intravascular platelet aggregation and the influence of blood flow velocity
,”
Microvasc. Res.
11
,
79
87
(
1976
).
90.
Z.
Xu
,
N.
Chen
,
S. C.
Shadden
,
J. E.
Marsden
,
M. M.
Kamocka
,
E. D.
Rosend
, and
M.
Alber
, “
Study of blood flow impact on growth of thrombi using a multiscale model
,”
Soft Matter
5
,
769
779
(
2009
).
91.
K. B.
Neeves
,
S. F.
Maloney
,
K. P.
Fong
,
A. A.
Schmaier
,
M. L.
Kahn
,
L. F.
Brass
, and
S. L.
Diamond
, “
Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates
,”
J. Thromb. Haemostasis
6
,
2193
2201
(
2008
).
92.
J. A.
Lopez
,
I.
del Conde
, and
C. N.
Shrimpton
, “
Receptors, rafts, and microvesicles in thrombosis and inflammation
,”
J. Thromb. Haemostasis
3
,
1737
1744
(
2005
).
93.
J. L.
Spivak
, “
Polycythemia vera: Myths, mechanisms, and management
,”
Blood
100
,
4272
4290
(
2002
).
94.
A.-L.
Ståhl
,
K.
Johansson
,
M.
Mossberg
,
R.
Kahn
, and
D.
Karpman
, “
Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases
,”
Pediatr. Nephrol.
34
,
11
30
(
2019
).
You do not currently have access to this content.