The extrusion flow instabilities of three commercial styrene-butadiene rubbers (SBR) are investigated as a function of molecular weight distribution (MWD); molecular architecture (linear, branched); and temperature. The samples have multimodal MWD, with the main component being SBR and a low amount, less than 10 wt. %, of low-molecular weight hydrocarbons. Deviation from the Cox–Merz rule at high angular frequencies/shear rates becomes intense as the amount of medium-molecular weight component increases. Optical analysis is used to identify and quantify spatial surface distortions, specifically wavelength (λ) and height (h), of the different types of extrusion flow instabilities. Qualitative constitutive models are reviewed and used to fit the experimental data for the spatial characteristics of extrusion flow instability. The fitting parameters as obtained by the models are correlated with molecular properties of the materials. It is found that the characteristic spatial wavelength (λ) increases as the extrusion temperature decreases. Hence, the influence of temperature on the spatial characteristic wavelength is investigated and an Arrhenius behavior is observed.

1.
A.
Leonov
and
A.
Prokunin
,
Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids
(
Chapman & Hall
,
1994
).
2.
M. M.
Denn
, “
Extrusion instabilities and wall slip
,”
Ann. Rev. Fluid Mech.
33
,
265
(
2001
).
3.
S. G.
Hatzikiriakos
, “
Wall slip of molten polymers
,”
Prog. Polym. Sci.
37
,
624
(
2012
).
4.
S. G.
Hatzikiriakos
and
K.
Migler
,
Polymer Processing Instabilities: Control and Understanding
(
Marcel Dekker
,
2005
).
5.
R.
Koopmans
,
C. F. J.
den Doelder
, and
J.
Molenaar
,
Polymer Melt Fracture
(
CRC Press
,
2011
).
6.
S. Q.
Wang
,
Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation
(
John Wiley & Sons
,
2017
).
7.
S. Q.
Wang
, “
Molecular transitions and dynamics at polymer/wall interfaces: Origins of flow instabilities and wall slip
,” in
Polymers in Confined Environments
, edited by
K.
Binder
,
S.
Granick
,
K.
Binder
,
P. G.
de Gennes
,
E. P.
Giannelis
,
G. S.
Grest
,
H.
Hervet
,
R.
Krishnamoorti
,
L.
Léger
,
E.
Manias
,
E.
Raphaël
, and
S. Q.
Wang
(
Springer-Verlag Berlin Heidelberg
,
1999
).
8.
I. F. C.
Naue
, “
Development of improved rheometric tools and their application on the non-Newtonian rheology of polymeric fluids
,” Ph.D. thesis [
Karlsruhe Institute of Technology (KIT)
,
Karlsruhe, Germany
,
2013
].
9.
C. F. J.
den Doelder
, “
Design and implementation of polymer melt fracture models
,” Ph.D. thesis (
Eindhoven University of Technology
,
Eindhoven, Netherlands
,
1999
).
10.
D.
Tang
,
F. H.
Marchesini
,
L.
Cardon
, and
D. R.
D'hooge
, “
State of the-art for extrudate swell of molten polymers: From fundamental understanding at molecular scale toward optimal die design at final product scale
,”
Macromol. Mater. Eng.
305
,
2000340
(
2020
).
11.
A.
Gansen
,
M.
Řehoř
,
C.
Sill
,
P.
Polińska
,
S.
Westermann
,
J.
Dheur
,
J. S.
Hale
, and
J.
Baller
, “
Investigation of the sharkskin melt instability using optical Fourier analysis
,”
J. Appl. Polym. Sci.
137
,
48806
(
2020
).
12.
I. F. C.
Naue
,
R.
Kádár
, and
M.
Wilhelm
, “
A new high sensitivity system to detect instabilities during the extrusion of polymer melts
,”
Macromol. Mater. Eng.
300
,
1141
(
2015
).
13.
H.
Palza
,
S.
Filipe
,
I. F. C.
Naue
, and
M.
Wilhelm
, “
Correlation between polyethylene topology and melt flow instabilities by determining in-situ pressure fluctuations and applying advanced data analysis
,”
Polymer
51
,
522
(
2010
).
14.
C. K.
Georgantopoulos
,
I. F. C.
Naue
,
A.
Causa
,
L.
Garro
, and
M.
Wilhelm
, “
Investigation of melt flow instabilities in SBR: Influence of MWD and microstructure at in situ pressure fluctuations as detected by capillary rheology
,”
Annu. Trans. Nordic Rheol. Soc.
27
,
151
(
2019
).
15.
C. K.
Georgantopoulos
,
M. K.
Esfahani
,
C.
Botha
,
I. F. C.
Naue
,
N.
Dingenouts
,
A.
Causa
,
R.
Kádár
, and
M.
Wilhelm
, “
Mechano-optical characterization of extrusion flow instabilities in styrene butadiene rubbers: Investigating the influence of molecular properties and die geometry
,”
Macromol. Mater. Eng.
306
,
2000801
(
2021
).
16.
M.
Sentmanat
and
S. G.
Hatzikiriakos
, “
Mechanism of gross melt fracture elimination in the extrusion of polyethylenes in the presence of boron nitride
,”
Rheol. Acta
43
,
624
(
2004
).
17.
M.
Ansari
,
S. G.
Hatzikiriakos
,
A. M.
Sukhadia
, and
D. C.
Rohlfing
, “
Rheology of Ziegler-Natta and metallocene high-density polyethylenes broad molecular weight distribution effects
,”
Rheol. Acta
50
,
17
(
2011
).
18.
P.
Cox
and
E. H.
Merz
, “
Rheology of polymer melts: A correlation of dynamic and steady flow measurements
,”
J. Polym. Sci.
28
,
619
(
1958
).
19.
Y. W.
Inn
, “
Melt fracture and wall slip of metallocene-catalyzed bimodal polyethylenes in capillary flow
,”
J. Rheol.
57
,
393
(
2013
).
20.
M.
Ebrahimi
,
M.
Ansari
, and
S. G.
Hatzikiriakos
, “
Wall slip of polydisperse linear polymers using double reptation
,”
J. Rheol.
59
,
885
(
2015
).
21.
M.
Ebrahimi
,
M.
Ansari
,
Y. W.
Inn
, and
S. G.
Hatzikiriakos
, “
Surface fractionation effects on slip of polydisperse polymer melts
,”
Phys. Fluids
28
,
093101
(
2016
).
22.
W. F.
Busse
, “
Two decades of high-polymer physics: A survey and forecast
,”
Phys. Today
17
(
9
),
32
(
1964
).
23.
S. Q.
Wang
,
P. A.
Drda
, and
Y. W.
Inn
, “
Exploring molecular origins of sharkskin, partial slip, and slope change in flow curves of linear low density polyethylene
,”
J. Rheol.
40
,
875
(
1996
).
24.
J. R.
Barone
,
N.
Plucktaveesak
, and
S. Q.
Wang
, “
Interfacial molecular instability mechanisms for sharkskin phenomenon in capillary extrusion of linear polyethylenes
,”
J. Rheol.
42
,
813
(
1998
).
25.
Y. W.
Inn
,
R. J.
Fisher
, and
M. T.
Shaw
, “
Visual observation of development of sharkskin melt fracture in polybutadiene extrusion
,”
Rheol. Acta
37
,
573
(
1998
).
26.
F. N.
Cogswell
, “
Stretching flow instabilities at the exits of extrusion dies
,”
J. Non-Newtonian Fluid Mech.
2
,
37
(
1977
).
27.
E.
Miller
and
J. P.
Rothstein
, “
Control of the sharkskin instability in the extrusion of polymer melts using induced temperature gradients
,”
Rheol. Acta
44
,
160
(
2004
).
28.
E.
Miller
,
S. J.
Lee
, and
J. P.
Rothstein
, “
The effect of temperature gradients on the sharkskin surface instability in polymer extrusion through a slit die
,”
Rheol. Acta
45
,
943
(
2006
).
29.
C.
Botha
,
J.
Höpfner
,
B.
Mayerhöfer
, and
M.
Wilhelm
, “
On-line SEC-MR-NMR hyphenation: Optimization of sensitivity and selectivity on a 62 MHz benchtop NMR spectrometer
,”
Polym. Chem.
10
,
2230
(
2019
).
30.
W.
Burchard
,
Solution Properties of Branched Macromolecules
(
Springer-Verlag
,
1999
).
31.
J.
Brandrup
,
E. H.
Immergut
, and
E. A.
Grulke
,
Polymer Handbook
, 4th ed. (
John Wiley & Sons
,
1999
).
32.
M.
Maurice
,
Rubber Technology
(
Springer Science+Business Media
,
Dordrecht
,
1999
).
33.
H. E.
Railsback
,
N. A.
Stumpe
, and
W. S.
Howard
,
Butadiene-Styrene Copolymers for Use in Tires Have Been Developed by Modifying the Microstructure and Molecular Configuration by the Techniques of Solution Polymerization and by Using Discriminatory Control of Polymerization Conditions
(
Rubber Age
,
1974
).
34.
F. A.
Morrison
,
Understanding Rheology
(
Oxford University Press
,
2001
).
35.
M.
Rubinstein
and
R. H.
Colby
, “
Self-consistent theory of polydisperse entangle polymers: Linear viscoelasticity of binary blends
,”
J. Chem. Phys.
89
,
5291
(
1988
).
36.
M.
Doi
and
S. F.
Edwards
, “
Dynamic of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state
,”
J. Chem. Soc. Faraday Trans.
74
,
1789
(
1978
).
37.
M.
Mooney
, “
Explicit formulas for slip and fluidity
,”
J. Rheol.
2
,
210
(
1931
).
38.
L. J.
Fetters
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on entanglement, critical and reptation molecular weights
,”
Macromolecules
32
,
6847
(
1999
).
39.
J. E.
Mark
,
Physical Properties of Polymer Handbook
(
Springer Science+Business Media
,
2007
).
40.
F.
Brochard-Wyart
and
P. G.
de Gennes
, “
Shear-dependent slippage at a polymer/solid interface
,”
Langmuir
8
,
3033
(
1992
).
41.
Y. W.
Inn
,
L.
Wang
, and
M. T.
Shaw
, “
Efforts to find stick-slip flow in the land of a die under sharkskin melt fracture conditions: Polybutadiene
,”
Macromol. Symp.
158
,
65
(
2000
).
42.
J. R.
Barone
and
S. Q.
Wang
, in Paper IR6, SoR 70th Annual Meeting
, 4–9 October (
1998
).
43.
H.
Ovaici
,
M. R.
Mackley
,
G. H.
McKinley
, and
S. J.
Crook
, “
The experimental observation and modeling of an ‘Ovaici’ necklace and stick-slip instability arising during the cold extrusion of chocolate
,”
J. Rheol.
42
,
125
(
1998
).
44.
T. I.
Burghelea
,
H. J.
Griess
, and
H.
Münstedt
, “
Comparative investigations of surface instabilities (‘Sharkskin’) of a linear and a long-chain branched polyethylene
,”
J. Non-Newtonian Fluid Mech.
165
,
1093
(
2010
).
45.
T. I.
Burghelea
,
H. J.
Griess
, and
H.
Münstedt
, “
An in situ investigation of the draw resonance phenomenon in film casting of a polypropylene melt
,”
J. Non-Newtonian Fluid Mech.
173–174
,
87
(
2012
).
46.
K. B.
Migler
,
Y.
Son
,
F.
Qiao
, and
F.
Flynn
, “
Extensional deformation, cohesive failure, and boundary conditions during sharkskin melt fracture
,”
J. Rheol.
46
,
383
(
2002
).
47.
G.
Karapetsas
and
J.
Tsamopoulos
, “
On the stick-slip flow from slit and cylindrical dies of a Phan-Thien and Tanner fluid model. II. Linear stability analysis
,”
Phys. Fluids
25
,
093105
(
2013
).
48.
D.
Pettas
,
G.
Karapetsas
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
On the origin of the extrusion instabilities: Linear stability analysis of the viscoelastic die swell
,”
J. Non-Newtonian Fluid Mech.
224
,
61
(
2015
).
49.
V. A. H.
Boudara
,
J. D.
Peterson
,
L. G.
Leal
, and
D. J.
Read
, “
Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-Double-Poly models
,”
J. Rheol.
63
,
71
(
2019
).
50.
S.
Trinkle
,
P.
Walter
, and
C.
Friedrich
, “
Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers
,”
Rheol. Acta
40
,
322
(
2001
).
51.
S.
Trinkle
,
P.
Walter
, and
C.
Friedrich
, “
Van Gurp-Palmen-plot II—classification of long chain branched polymers by their topology
,”
Rheol. Acta
41
,
103
(
2002
).
52.
M.
Abbasi
,
L.
Faust
, and
M.
Wilhelm
, “
Comb and bottlebrush polymers with superior rheological and mechanical properties
,”
Adv. Mater.
31
,
1806484
(
2019
).
53.
F. J.
Stadler
,
A.
Nishioka
,
J.
Stange
,
K.
Koyama
, and
H.
Münstedt
, “
Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows
,”
Rheol. Acta
46
,
1003
(
2007
).
54.
F. J.
Stadler
,
C.
Piel
,
W.
Kaminsky
, and
H.
Münstedt
, “
Rheological characterization of long-chain branched polyethylenes and comparison with classical analytical methods
,”
Macromol. Symp.
236
,
209
(
2006
).
55.
H. P.
Schreiber
and
S. H.
Storey
, “
Molecular fractionation in capillary flow of polymer fluids
,”
J. Polym. Sci. Part B
3
,
723
(
1965
).
56.
H. P.
Schreiber
,
S. H.
Storey
, and
E. B.
Bagley
, “
Molecular fractionation in the flow of polymeric fluids
,”
J. Rheol.
10
,
275
(
1966
).
57.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
1980
).
58.
S. Q.
Wang
and
P. A.
Drda
, “
Molecular instabilities in capillary flow of polymer melts: Interfacial stick-slip transition, wall slip and extrudate distortion
,”
Macromol. Chem. Phys.
198
,
673
(
1997
).

Supplementary Material

You do not currently have access to this content.