Herein, the effect of gas-bubble generation by a chemical reaction on viscous fingering (VF) is investigated using a Hele–Shaw cell in a miscible two-phase liquid. Sodium bicarbonate (NaHCO3) and citric acid (C6H8O7) solutions were used as displacing and displaced fluids, respectively. As factors affecting the displacement pattern with gas bubbles, four characteristic times of displacement, chemical reaction, bubble nucleation, and bubble coalescence, as well as the viscosity ratio, were discussed. In the experiments conducted herein, the characteristic time of the chemical reaction was shorter than those of other characteristic factors. Bubble coalescence occurred quickly, and the coalescence time was almost the same as the nucleation time. Therefore, if the displacement time changes with the injection flow rate, then the flow pattern changes depending on the competition between the displacement and nucleation times. When the displacement time was shorter than the nucleation time, the bubble generation did not follow the onset of VF. First, a VF pattern was formed, and small gas bubbles were then generated in the mixture inside the fingers. On the backbone of the fingers, small gas bubbles lined up and grew bigger with time. Moreover, when the nucleation time was lower than the displacement time, the bubbles coalesced more rapidly, thereby inducing outward flow with gas nucleation in addition to fluid injection. These gas bubbles prevented the mixing of the displacing and displaced fluids. Furthermore, the effects of C6H8O7 concentration and the viscosity ratio were discussed from the viewpoint of the characteristic time.

1.
H.
Wang
,
F.
Torabi
,
F.
Zeng
, and
H.
Xiao
, “
Experimental and numerical study of non-equilibrium dissolution and exsolution behavior of CO2 in a heavy oil system utilizing Hele-Shaw-like visual cell
,”
Fuel
270
,
117501
(
2020
).
2.
M.
Wu
,
X.
Lu
,
X.
Zhou
,
Z.
Lin
, and
F.
Zeng
, “
Experimental study on the temperature effects of foamy oil flow in porous media
,”
Fuel
271
,
117649
(
2020
).
3.
S.
Li
,
Z.
Li
,
T.
Lu
, and
B.
Li
, “
Experimental study on foamy oil flow in porous media with orinoco belt heavy oil
,”
Energy Fuels
26
,
6332
(
2012
).
4.
J. J.
Sheng
,
R. E.
Hayes
,
B. B.
Maini
, and
W. S.
Tortike
, “
Modelling foamy oil flow in porous media
,”
Transp. Porous Media
35
,
227
(
1999
).
5.
M.
Seyyedi
,
P.
Mahzari
, and
M.
Sohrabi
, “
An integrated study of the dominant mechanism leading to improved oil recovery by carbonated water injection
,”
J. Ind. Eng. Chem.
45
,
22
(
2017
).
6.
C.
Esene
,
N.
Rezaei
,
A.
Aborig
, and
S.
Zendehboudi
, “
Comprehensive review of carbonated water injection for enhanced oil recovery
,”
Fuel
237
,
1086
(
2019
).
7.
A. H.
Alizadeh
,
M.
Khishvand
,
M. A.
Ioannidis
, and
M.
Piri
, “
Multi-scale experimental study of carbonated water injection: An effective process for mobilization and recovery of trapped oil
,”
Fuel
132
,
219
(
2014
).
8.
M.
Riazi
,
M.
Sohrabi
, and
M.
Jamiolahmady
, “
Experimental study of pore-scale mechanisms of carbonated water injection
,”
Transp. Porous Media
86
,
73
(
2011
).
9.
R.
Xu
,
R.
Li
,
F.
Huang
, and
P.
Jiang
, “
Pore-scale visualization on a depressurization-induced CO2 exsolution
,”
Sci. Bull.
62
,
795
(
2017
).
10.
R.
Xu
,
R.
Li
,
J.
Ma
,
D.
He
, and
P.
Jiang
, “
Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage
,”
Acc. Chem. Res.
50
,
2056
(
2017
).
11.
L.
Zuo
,
C.
Zhang
,
R. W.
Falta
, and
S. M.
Benson
, “
Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks
,”
Adv. Water Resource
53
,
188
(
2013
).
12.
L.
Zuo
,
S.
Krevor
,
R. W.
Falta
, and
S. M.
Benson
, “
An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water depressurization
,”
Transp. Porous Media
91
,
459
(
2012
).
13.
W.
Zhao
and
M. A.
Ioannidis
, “
Gas exsolution and flow during supersaturated water injection in porous media: I. Pore network modeling
,”
Adv. Water Resource
34
,
2
(
2011
).
14.
R.
Enouy
,
M.
Li
,
M. A.
Ioannidis
, and
A. J. A.
Unger
, “
Gas exsolution and flow during supersaturated water injection in porous media: II. Column experiments and continuum modeling
,”
Adv. Water Resource
34
,
15
(
2011
).
15.
C. A.
Grattoni
and
R. A.
Dawe
, “
Gas and oil production from waterflood residual oil: Effects of wettability and oil spreading characteristics
,”
J. Pet. Sci. Eng.
39
,
297
(
2003
).
16.
Y.
Konno
,
Y.
Jin
,
K.
Shinjou
, and
J.
Nagao
, “
Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment
,”
RSC Adv.
4
,
51666
(
2014
).
17.
Y.
Konno
,
T.
Fujii
,
A.
Sato
,
K.
Akamine
,
M.
Naiki
,
Y.
Masuda
,
K.
Yamamoto
, and
J.
Nagao
, “
Key findings of the world's first offshore methane hydrate production test off the coast of Japan: Toward future commercial production
,”
Energy Fuels
31
,
2607
(
2017
).
18.
A. K.
Datta
, “
Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations
,”
J. Food Eng.
80
,
80
(
2007
).
19.
A.
Halder
,
A.
Dhall
, and
A. K.
Datta
, “
Modeling transport in porous media with phase change: Applications to food processing
,”
J. Heat Transfer
133
,
031010
(
2011
).
20.
L.
Holzer
,
D.
Wiedenmann
,
B.
Münch
,
L.
Keller
,
M.
Prestat
,
P.
Gasser
,
I.
Robertson
, and
B.
Grobéty
, “
The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells
,”
J. Mater. Sci.
48
,
2934
(
2013
).
21.
D. D.
Joseph
,
A. M.
Kamp
, and
R.
Bai
, “
Modeling foamy oil flow in porous media
,”
Int. J. Multiphase Flow
28
,
1659
(
2002
).
22.
D. D.
Joseph
,
A. M.
Kamp
,
T.
Ko
, and
R.
Bai
, “
Modeling foamy oil flow in porous media II: Nonlinear relaxation time model of nucleation
,”
Int. J. Multiphase Flow
29
,
1489
(
2003
).
23.
J. J.
Sheng
,
B. B.
Maini
,
R. E.
Hayes
, and
W. S.
Tortike
, “
Critical review of foamy oil flow, transport in porous media
,”
Transp. Porous Media
35
,
157
(
1999
).
24.
G. M.
Homsy
, “
Viscous fingering in porous media
,”
Annu. Rev. Fluid Mech
19
,
271
(
1987
).
25.
A.
De Wit
and
G. M.
Homsy
, “
Nonlinear interactions of chemical reactions and viscous fingering in porous media
,”
Phys. Fluids
11
,
949
(
1999
).
26.
S.
Tanveer
, “
Surprises in viscous fingering
,”
J. Fluid Mech.
409
,
273
(
2000
).
27.
L.
Paterson
, “
Radial fingering in a Hele Shaw cell
,”
J. Fluid Mech.
113
,
513
(
1981
).
28.
T.
Suekane
,
J.
Ono
,
A.
Hyodo
, and
Y.
Nagatsu
, “
Three-dimensional viscous fingering of miscible fluids in porous media
,”
Phys. Rev. Fluids
2
,
103902
(
2017
).
29.
V.
Kozlov
,
I.
Karpunin
, and
N.
Kozlov
, “
Finger instability of oscillating liquid-liquid interface in radial Hele-Shaw cell
,”
Phys. Fluids
32
,
102102
(
2020
).
30.
D.
Pihler-Puzović
,
G. G.
Peng
,
J. R.
Lister
,
M.
Heil
, and
A.
Juel
, “
Viscous fingering in a radial elastic-walled Hele-Shaw cell
,”
J. Fluid Mech.
849
,
163
(
2018
).
31.
P. R.
Varges
,
P. E.
Azevedo
,
B. S.
Fonseca
,
P. R.
de Souza Mendes
,
M. F.
Naccache
, and
A. L.
Martins
, “
Immiscible liquid-liquid displacement flows in a Hele-Shaw cell including shear thinning effects
,”
Phys. Fluids
32
,
013105
(
2020
).
32.
S.
Ahmadikhamsi
,
F.
Golfier
,
C.
Oltean
,
E.
Lefèvre
, and
S. A.
Bahrani
, “
Impact of surfactant addition on non-Newtonian fluid behavior during viscous fingering in Hele-Shaw cell
,”
Phys. Fluids
32
,
012103
(
2020
).
33.
Y.
Nagatsu
and
A.
De Wit
, “
Viscous fingering of a miscible reactive A+B→C interface for an infinitely fast chemical reaction: Nonlinear simulations
,”
Phys. Fluids
23
,
043103
(
2011
).
34.
M. C.
Kim
and
S. S. S.
Cardoso
, “
Diffusivity ratio effect on the onset of the buoyancy-driven instability of an A + B → C chemical reaction system in a Hele-Shaw cell: Numerical simulations and comparison with experiments
,”
Phys. Fluids
31
,
084101
(
2019
).
35.
M. R.
Shahnazari
,
I. M.
Ashtiani
, and
A.
Saberi
, “
Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement
,”
Phys. Fluids
30
,
034106
(
2018
).
36.
H.
Shokri
,
M. H.
Kayhani
, and
M.
Norouzi
, “
Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids
,”
Phys. Fluids
29
,
033101
(
2017
).
37.
Y.
Nagatsu
and
T.
Ueda
, “
Effects of reactant concentrations on reactive miscible viscous fingering
,”
AIChE J.
47
,
1711
(
2001
).
38.
Y.
Nagatsu
and
T.
Ueda
, “
Effects of finger-growth velocity on reactive miscible viscous fingering
,”
AIChE J.
49
,
789
(
2003
).
39.
Y.
Nagatsu
and
T.
Ueda
, “
Analytical study of effects of finger-growth velocity on reaction characteristics of reactive miscible viscous fingering by using a convection-diffusion-reaction model
,”
Chem. Eng. Sci.
59
,
3817
(
2004
).
40.
Y.
Nagatsu
,
K.
Matsuda
,
Y.
Kato
, and
Y.
Tada
, “
Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions
,”
J. Fluid Mech.
571
,
475
(
2007
).
41.
Y.
Nagatsu
,
Y.
Kondo
,
Y.
Kato
, and
Y.
Tada
, “
Effects of moderate Damköhler number on miscible viscous fingering involving viscosity decrease due to a chemical reaction
,”
J. Fluid Mech.
625
,
97
(
2009
).
42.
Y.
Nagatsu
,
Y.
Kondo
,
Y.
Kato
, and
Y.
Tada
, “
Miscible viscous fingering involving viscosity increase by a chemical reaction with moderate Damköhler number
,”
Phys. Fluids
23
,
014109
(
2011
).
43.
L. A.
Riolfo
,
Y.
Nagatsu
,
S.
Iwata
,
R.
Maes
,
P. M. J.
Trevelyan
, and
A.
De Wit
, “
Experimental evidence of reaction-driven miscible viscous fingering
,”
Phys. Rev. E
85
,
015304
(
2012
).
44.
P.
Shukla
and
A.
De Wit
, “
Influence of the Péclet number on reactive viscous fingering
,”
Phys. Rev. Fluids
5
,
14004
(
2020
).
45.
T.
Gérard
and
A.
De Wit
, “
Miscible viscous fingering induced by a simple A+B → C chemical reaction
,”
Phys. Rev. E
79
,
016308
(
2009
).
46.
M. C.
Kim
and
S. S. S.
Cardoso
, “
Diffusivity ratio effect on the onset of the buoyancy-driven instability of an A + B → C chemical reaction system in a Hele-Shaw cell: Asymptotic and linear stability analyses
,”
Phys. Fluids
30
,
094102
(
2018
).
47.
J.
Fernandez
and
G. M.
Homsy
, “
Viscous fingering with chemical reaction: Effect of in-situ production of surfactants
,”
J. Fluid Mech.
480
,
267
(
2003
).
48.
R.
Tsuzuki
,
T.
Ban
,
M.
Fujimura
, and
Y.
Nagatsu
, “
Dual role of surfactant-producing reaction in immiscible viscous fingering evolution
,”
Phys. Fluids
31
,
022102
(
2019
).
49.
Y.
Nagatsu
,
A.
Hayashi
,
M.
Ban
,
Y.
Kato
, and
Y.
Tada
, “
Spiral pattern in a radial displacement involving a reaction-producing gel
,”
Phys. Rev. E
78
,
026307
(
2008
).
50.
Y.
Nagatsu
,
S.-K.
Bae
,
Y.
Kato
, and
Y.
Tada
, “
Miscible viscous fingering with a chemical reaction involving precipitation
,”
Phys. Rev. E
77
,
067302
(
2008
).
51.
S.
Sin
,
T.
Suekane
,
Y.
Nagatsu
, and
A.
Patmonoaji
, “
Three-dimensional visualization of viscous fingering for non-Newtonian fluids with chemical reactions that change viscosity
,”
Phys. Rev. Fluids
4
,
054502
(
2019
).
52.
Y.
She
,
M. A.
Mahardika
,
Y.
Hu
,
A.
Patmonoaji
,
S.
Matsushita
,
T.
Suekane
, and
Y.
Nagatsu
, “
Three-dimensional visualization of the alkaline flooding process with in-situ emulsification for oil recovery in porous media
,”
J. Pet. Sci. Eng.
202
,
108519
(
2021
).
53.
Y.
Nagatsu
,
K.
Abe
,
K.
Konmoto
, and
K.
Omori
, “
Chemical flooding for enhanced heavy oil recovery via chemical-reaction-producing viscoelastic material
,”
Energy Fuels
34
,
10655
(
2020
).
You do not currently have access to this content.