A complete thermodynamical analysis for a binary mixture of viscous Korteweg fluids with two velocities and two temperatures is developed. The constitutive functions are allowed to depend on the diffusion velocity and the specific internal energies of both constituents, together with their first gradients, on the symmetric part of the gradient of barycentric velocity as well as on the mass density of the mixture and the concentration of one of the constituents, together with their first and second gradients. Compatibility with the entropy principle is analyzed by applying the extended Liu procedure, and a complete solution of the set of thermodynamical restrictions is recovered in three space dimensions. Finally, the equilibrium configurations are investigated, and it is proved that no restrictions arise on the admissible phase boundaries. The theoretical results here provided may serve as a basis for experimental and/or numerical investigations, in particular for determining the surface levels of phase boundaries at equilibrium and making a comparison with the experimental profiles.

1.
I.
Müller
, “
A thermodynamic theory of mixtures of fluids
,”
Arch. Ration. Mech. Anal.
28
,
1
39
(
1968
).
2.
M. E.
Gurtin
and
A. S.
Vargas
, “
On the classical theory of reacting fluid mixtures
,”
Arch. Ration. Mech. Anal.
43
,
179
197
(
1971
).
3.
R. M.
Bowen
, “
Theory of mixtures, part I
,” in
Continuum Physics
, edited by
A. C.
Eringen
(
Academic Press
,
New York
,
2002
), pp.
1
127
.
4.
I.-S.
Liu
and
I.
Müller
, “
Thermodynamics of mixtures of fluids
,” in
Rational Thermodynamics
, edited by
C.
Truesdell
(
Springer-Verlag
,
1984
), pp.
264
285
.
5.
C.
Truesdell
,
Rational Thermodynamics
(
Springer-Verlag
,
1984
).
6.
R. M.
Bowen
and
D. J.
Garcia
, “
On the thermodynamics of mixtures with several temperatures
,”
Int. J. Eng. Sci.
8
,
63
83
(
1970
).
7.
A.
Palumbo
,
C.
Papenfuss
, and
P.
Rogolino
, “
A mesoscopic approach to diffusion phenomena in mixtures
,”
J. Non-Equilib. Thermodyn.
30
,
401
419
(
2005
).
8.
H.
Gouin
and
T.
Ruggeri
, “
Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids
,”
Phys. Rev. E
78
,
016303
(
2008
).
9.
D.
Bothe
and
W.
Dreyer
, “
Continuum thermodynamics of chemically reacting fluid mixtures
,”
Acta Mech.
226
,
1757
1805
(
2015
).
10.
V. A.
Cimmelli
,
M.
Gorgone
,
F.
Oliveri
, and
A. R.
Pace
, “
Weakly nonlocal thermodynamics of binary mixtures of Korteweg fluids with two velocities and two temperatures
,”
Eur. J. Mech./B Fluids
83
,
58
65
(
2020
).
11.
M.
Gorgone
and
P.
Rogolino
, “
A thermodynamical description of third grade fluids mixtures
,”
J. Non-Equilb. Thermodyn.
(submitted to) (
2021
).
12.
J. E.
Dunn
and
J.
Serrin
, “
On the thermomechanics of the interstitial working
,”
Arch. Ration. Mech. Anal.
88
,
95
133
(
1985
).
13.
J. E.
Dunn
, “
Interstitial working and a nonclassical continuum thermodynamics
,” in
New Perspectives in Thermodynamics
, edited by
J.
Serrin
(
Springer
,
1986
), pp.
187
222
.
14.
I.
Müller
, “
On the entropy inequality
,”
Arch. Ration. Mech. Anal.
26
,
118
141
(
1967
).
15.
V. A.
Cimmelli
,
F.
Oliveri
, and
A. R.
Pace
, “
On the thermodynamics of Korteweg fluids with heat conduction and viscosity
,”
J. Elast.
104
,
115
131
(
2011
).
16.
V. A.
Cimmelli
,
A.
Sellitto
, and
V.
Triani
, “
A new perspective on the form of the first and second laws in rational thermodynamics: Korteweg fluids as an example
,”
J. Non-Equilib. Thermodyn.
35
,
251
265
(
2010
).
17.
M.
Francaviglia
,
A.
Palumbo
, and
P.
Rogolino
, “
Thermodynamics of mixtures as a problem with internal variables. The general theory
,”
J. Non-Equilib. Thermodyn.
31
,
419
429
(
2006
).
18.
M.
Francaviglia
,
A.
Palumbo
, and
P.
Rogolino
, “
Internal variables thermodynamics of two component mixtures under linear constitutive hypothesis with an application to superfluid helium
,”
J. Non-Equilib. Thermodyn.
33
,
149
164
(
2008
).
19.
F.
Oliveri
,
A.
Palumbo
, and
P.
Rogolino
, “
On a model of mixtures with internal variables: Extended Liu procedure for the exploitation of the entropy principle
,”
Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis., Mat. Nat.
94
,
A2
(
2016
).
20.
D. J.
Korteweg
, “
Sur la forme qui prennent les équations du mouvement des fluids si l'on tient compte des forces capillaires par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité
,”
Arch. Néerl. Sci. Exactes Nat.
6
,
1
24
(
1901
).
21.
L. S.
Pan
,
J.
Lou
,
H. Y.
Li
, and
C. W.
Kang
, “
A diffuse interface model for two-phase flows with phase transition
,”
Phys. Fluids
31
,
092112
(
2019
).
22.
O.
Souček
,
M.
Heida
, and
J.
Málek
, “
On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids
,”
Int. J. Eng. Sci.
154
,
103316
(
2020
).
23.
R. E.
Swaney
and
R. B.
Bird
, “
Transport phenomena and thermodynamics: Multicomponent mixtures
,”
Phys. Fluids
31
,
021202
(
2019
).
24.
J.
Málek
,
V.
Průša
,
T.
Skřivan
, and
E.
Süli
, “
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
,”
Phys. Fluids
30
,
023101
(
2018
).
25.
V. A.
Cimmelli
,
A.
Sellitto
, and
V.
Triani
, “
A new thermodynamic framework for second-grade Korteweg-type fluids
,”
J. Math. Phys.
50
,
053101
(
2009
).
26.
V. A.
Cimmelli
,
F.
Oliveri
, and
V.
Triani
, “
Exploitation of the entropy principle: Proof of Liu theorem if the gradients of the governing equations are considered as constraints
,”
J. Math. Phys.
52
,
023511
(
2011
).
27.
V. A.
Cimmelli
,
F.
Oliveri
, and
A. R.
Pace
, “
A nonlocal phase-field model of Ginzburg-Landau-Korteweg fluids
,”
Continuum Mech. Thermodyn.
27
,
367
378
(
2015
).
28.
M.
Gorgone
,
F.
Oliveri
, and
P.
Rogolino
, “
Continua with non-local constitutive laws: Exploitation of entropy inequality
,”
Int. J. Non-Linear Mech.
126
,
103573
(
2020
).
29.
I.-S.
Liu
, “
Method of Lagrange multipliers for exploitation of the entropy principle
,”
Arch. Ration. Mech. Anal.
46
,
131
148
(
1972
).
30.
V. A.
Cimmelli
, “
An extension of Liu procedure in weakly nonlocal thermodynamics
,”
J. Math. Phys.
48
,
113510
(
2007
).
31.
M.
Heida
and
J.
Málek
, “
On Korteweg-type compressible fluid-like materials
,”
Int. J. Eng. Sci.
48
,
1313
1324
(
2010
).
32.
K.
Hutter
and
K. R.
Rajagopal
, “
On flows of granular materials
,”
Continuum Mech. Thermodyn.
6
,
81
139
(
1994
).
33.
M.
Gorgone
and
P.
Rogolino
, “
On the characterization of constitutive equations for third-grade viscous Korteweg fluids
,”
Phys. Fluids
33
,
043107
(
2021
).
34.
C.
Truesdell
and
K. R.
Rajagopal
,
An Introduction to the Mechanics of Fluids
(
Birkhäuser
,
Boston-Basel-Berlin
,
2000
).
35.
A. C.
Hearn
and
R.
Schöpf
, “
Reduce User's Manual. Free Version
,” Available at https://reduce-algebra.sourceforge.io/.
36.
V. A.
Cimmelli
,
D.
Jou
,
T.
Ruggeri
, and
P.
Ván
, “
Entropy principle and recent results in non-equilibrium theories
,”
Entropy
16
,
1756
1807
(
2014
).
37.
D.
Jou
,
J.
Casas-Vázquez
, and
G.
Lebon
,
Extended Irreversible Thermodynamics
, 4th ed. (
Springer
,
2010
).
38.
P.
Rogolino
and
V. A.
Cimmelli
, “
Differential consequences of balance laws in extended irreversible thermodynamics of rigid heat conductors
,”
Proc. R. Soc. A
475
,
20180482
(
2019
).
39.
T.
Wolf
, “
Investigating differential equations with CRACK, LiePDE, ApplySym, and ConLaw
,” in
Handbook of Computer Algebra, Foundations, Applications, Systems
, edited by
J.
Grabmeier
,
E.
Kaltofen
, and
V.
Weispfenning
(
Springer
,
New York
,
2002
), pp.
465
468
.
40.
J.
Serrin
, “
The form of interfacial surfaces in Korteweg's theory of phase equilibria
,”
Q. Appl. Math.
41
,
357
364
(
1983
).
41.
P.
Pucci
, “
An overdetermined system
,”
Q. Appl. Math.
41
,
365
367
(
1983
).
42.
G.
Manno
,
F.
Oliveri
, and
R.
Vitolo
, “
On differential equations characterized by their Lie point symmetries
,”
J. Math. Anal. Appl.
332
,
767
786
(
2007
).
43.
M.
Gorgone
and
F.
Oliveri
, “
Nonlinear first order PDEs reducible to autonomous form polynomially homogeneous in the derivatives
,”
J. Geom. Phys.
113
,
53
64
(
2017
).
44.
M.
Gorgone
and
F.
Oliveri
, “
Lie remarkable partial differential equations characterized by Lie algebras of point symmetries
,”
J. Geom. Phys.
144
,
314
323
(
2019
).
45.
I. M.
Khalatnikov
,
An Introduction to the Theory of Superfluidity
(
Addison-Wesley
,
1989
).
46.
R. J.
Atkin
and
N.
Fox
, “
On the foundations of Landau's theory of superfluid helium
,”
Arch. Ration. Mech. Anal.
87
,
1
9
(
1984
).
You do not currently have access to this content.