The unsteady dynamics of a gravitational liquid sheet, driven by a continuous harmonic perturbation in the lateral velocity component applied at the inlet section, is analyzed. The topology and the dynamics of the relevant flow structures are characterized by applying POD (Proper Orthogonal Decomposition) and spectral POD (SPOD) modal decompositions on two-dimensional two-phase numerical simulation data obtained with the volume-of-fluid approach. The investigation is carried out by varying the Weber number, the forcing frequency (Strouhal number), and the Reynolds number. The supercritical regime (We >1) features a traveling perturbation, exhibiting a spatial structure with leading sinuous modes. SPOD spectra confirm the occurrence of a discontinuity in frequency response between the supercritical and subcritical regimes. In the subcritical regime (We <1), the investigation highlights the excitation of a combined sinuous–varicose motion when the system is driven at resonance frequency for a relatively high Reynolds number (approaching the inviscid limit). The emergence of varicose modes is favored by low Weber numbers. The excitation of these modes occurs when the Weber number is decreased from We =0.90 down to 0.75, with a progressive shift of the varicose mode from higher harmonics toward the main frequency; it can be considered as a possible mechanism of breakup observed in experiments when the inlet flow rate is progressively reduced. The flow reconstruction based on both POD and SPOD confirms the good capability of SPOD modes to capture dynamically relevant features of the fluid motion in subcritical conditions.

1.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
2.
D. R.
Brown
, “
A study of the behaviour of a thin sheet of moving liquid
,”
J. Fluid Mech.
10
,
297
305
(
1961
).
3.
M.
Girfoglio
,
F.
De Rosa
,
G.
Coppola
, and
L.
de Luca
, “
Unsteady critical liquid sheet flows
,”
J. Fluid Mech.
821
,
219
247
(
2017
).
4.
S.
Schmidt
and
K.
Oberleithner
, “
Instability of forced planar liquid jets: Mean field analysis and nonlinear simulation
,”
J. Fluid Mech.
883
,
A7
(
2020
).
5.
A.
Arote
,
M.
Bade
, and
J.
Banerjee
, “
Numerical investigations on stability of the spatially oscillating planar two-phase liquid jet in a quiescent atmosphere
,”
Phys. Fluids
31
,
112103
(
2019
).
6.
A.
Arote
,
M.
Bade
, and
J.
Banerjee
, “
On coherent structures of spatially oscillating planar liquid jet developing in a quiescent atmosphere
,”
Phys. Fluids
32
,
082111
(
2020
).
7.
G. G.
Agbaglah
, “
Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream
,”
Phys. Fluids
33
,
062119
(
2021
).
8.
A.
Liu
,
D.
Sun
,
B.
Yu
,
J.
Wei
, and
Z.
Cao
, “
An adaptive coupled volume-of-fluid and level set method based on unstructured grids
,”
Phys. Fluids
33
,
012102
(
2021
).
9.
A.
Della Pia
,
M.
Chiatto
, and
L.
de Luca
, “
Global eigenmodes of thin liquid sheets by means of volume-of-fluid simulations
,”
Phys. Fluids
32
,
082112
(
2020
).
10.
A.
Della Pia
,
M.
Chiatto
, and
L.
de Luca
, “
Receptivity to forcing disturbances in subcritical liquid sheet flows
,”
Phys. Fluids
33
,
032113
(
2021
).
11.
B.
Torsey
,
S.
Weinstein
,
D.
Ross
, and
N.
Barlow
, “
The effect of pressure fluctuations on the shapes of thinning liquid curtains
,”
J. Fluid Mech.
910
,
A38
(
2021
).
12.
D.
Barreiro-Villaverde
,
A.
Gosset
, and
M. A.
Mendez
, “
On the dynamics of jet wiping: Numerical simulations and modal analysis
,”
Phys. Fluids
33
,
062114
(
2021
).
13.
O. T.
Schmidt
and
T.
Colonius
, “
Guide to spectral proper orthogonal decomposition
,”
AIAA J.
58
,
1023
1033
(
2020
).
14.
C. W.
Rowley
and
S. T. M.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
15.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
16.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
17.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
18.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
19.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
(2),
391
421
(
2014
).
20.
P. A.
Kadu
,
Y.
Sakai
,
Y.
Ito
,
K.
Iwano
,
M.
Sugino
,
T.
Katagiri
,
T.
Hayase
, and
K.
Nagata
, “
Application of spectral proper orthogonal decomposition to velocity and passive scalar fields in a swirling coaxial jet
,”
Phys. Fluids
32
,
015106
(
2020
).
21.
B.
Zhang
,
R.
Ooka
, and
H.
Kikumoto
, “
Identification of three-dimensional flow features around a square-section building model via spectral proper orthogonal decomposition
,”
Phys. Fluids
33
,
035151
(
2021
).
22.
M.
Chiatto
,
J. K.
Shang
,
L.
de Luca
, and
F.
Grasso
, “
Insights into low Reynolds flow past finite curved cylinders
,”
Phys. Fluids
33
,
035150
(
2021
).
23.
M.
Chiatto
,
L.
de Luca
, and
F.
Grasso
, “
Modal analysis of actively controlled flow past a backward facing ramp
,”
Phys. Rev. Fluids
6
,
064608
(
2021
).
24.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
600
(
2003
).
25.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
26.
R.
Scardovelli
and
S.
Zaleski
, “
Direct numerical simulation of free-surface and interfacial flow
,”
Annu. Rev. Fluid Mech.
31
,
567
603
(
1999
).
27.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
28.
A.
van Hooft
,
S.
Popinet
,
C.
van Heerwaarden
,
S.
van der Linden
,
S.
Roode
, and
B.
Wiel
, “
Towards adaptive grids for atmospheric boundary-layer simulations
,”
Boundary-Layer Meteorol.
167
,
421
443
(
2018
).
29.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
30.
A.
Nekkanti
and
O. T.
Schmidt
, “
Frequency-time analysis, low-rank reconstruction and denoising of turbulent flows using spod
,” arXiv:2011.03644 (
2021
).
31.
C.
Hayashi
, “
Subharmonic oscillations in nonlinear systems
,”
J. Appl. Phys.
24
,
521
529
(
1953
).
32.
O.
Schmidt
, “
Bispectral mode decomposition of nonlinear flows
,”
Nonlinear Dyn.
102
,
2479
2501
(
2020
).
33.
L.
de Luca
and
C.
Meola
, “
Surfactant effects on the dynamics of a thin liquid sheet
,”
J. Fluid Mech.
300
,
71
85
(
1995
).
34.
N.
Le Grand-Piteira
,
P.
Brunet
,
L.
Lebon
, and
L.
Limat
, “
Propagating wave pattern on a falling liquid curtain
,”
Phys. Rev. E
74
,
026305
(
2006
).
You do not currently have access to this content.