Three-dimensional Rayleigh–Taylor instability (RTI) with the time-varying acceleration in a finite domain is investigated in a systematic framework. The acceleration magnitude follows a power law in time with an exponent greater than −2. Applying the group theory, the instabilities are demonstrated considering the irreducible representations for observable periodic structures with a square symmetry in the plane normal to the acceleration. We derive the dynamical system and illustrate the universal form of the solutions in the linear and nonlinear regimes. The scale-dependent dynamics are shown to be single scale and multiscale in the two regimes, respectively. For the nonlinear regime solutions, fundamental scales are derived bridging the solutions in the finite- and infinite-sized domains. Special solutions for bubbles and spikes are identified from a one-parameter family of solutions. The effect of domain confinement is that the velocity and curvature decreases and shear increases as the domain size is reduced. The theory provides predictions for the flow field and demonstrates the interfacial behavior of RTI. Our results are in good agreement with the prior studies and also provide new benchmarks for experiments and simulations.

1.
E. E.
Meshkov
and
S. I.
Abarzhi
, “
Group theory and jelly's experiment of Rayleigh–Taylor instability and Rayleigh–Taylor interfacial mixing
,”
Fluid Dyn. Res.
51
,
065502
(
2019
).
2.
L.
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
14
,
170
177
(
1882
).
3.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
,”
Proc. R. Soc. London, Ser. A
201
,
192
196
(
1950
).
4.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
5.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1972
).
6.
S. P.
Regan
,
R.
Epstein
,
B. A.
Hammel
,
L. J.
Suter
,
J.
Ralph
,
H.
Scott
,
M. A.
Barrios
,
D. K.
Bradley
,
D. A.
Callahan
,
C.
Cerjan
,
G. W.
Collins
,
S. N.
Dixit
,
T.
Doeppner
,
M. J.
Edwards
,
D. R.
Farley
,
S.
Glenn
,
S. H.
Glenzer
,
I. E.
Golovkin
,
S. W.
Haan
,
A.
Hamza
,
D. G.
Hicks
,
N.
Izumi
,
J. D.
Kilkenny
,
J. L.
Kline
,
G. A.
Kyrala
,
O. L.
Landen
,
T.
Ma
,
J. J.
MacFarlane
,
R. C.
Mancini
,
R. L.
McCrory
,
N. B.
Meezan
,
D. D.
Meyerhofer
,
A.
Nikroo
,
K. J.
Peterson
,
T. C.
Sangster
,
P.
Springer
, and
R. P. J.
Town
, “
Hot-spot mix in ignition-scale implosions on the NIF
,”
Phys. Plasmas
19
,
056307
(
2012
).
7.
S. I.
Abarzhi
,
A. K.
Bhowmick
,
A.
Naveh
,
A.
Pandian
,
N. C.
Swisher
,
R. F.
Stellingwerf
, and
W. D.
Arnett
, “
Supernova, nuclear synthesis, fluid instabilities and mixing
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
18184
(
2019
).
8.
G. S.
Novak
,
J. P.
Ostriker
, and
L.
Ciotti
, “
Feedback from central black holes in elliptical galaxies: Two-dimensional models compared to one-dimensional models
,”
Astrophys. J.
737
,
26
(
2011
).
9.
R. P. J.
Town
and
A. R.
Bell
, “
Three-dimensional simulations of the implosion of inertial confinement fusion targets
,”
Phys. Rev. Lett.
67
,
1863
(
1991
).
10.
S. I.
Abarzhi
,
K.
Nishihara
, and
R.
Rosner
, “
A multi-scale character of the large-scale coherent dynamics in the Rayleigh–Taylor instability
,”
Phys. Rev. E
73
,
036310
(
2006
).
11.
S. I.
Abarzhi
, “
Coherent structures and pattern formation in Rayleigh–Taylor turbulent mixing
,”
Phys. Scr.
78
,
015401
(
2008
).
12.
S. I.
Abarzhi
, “
Review of theoretical modeling approaches of Rayleigh–Taylor instabilities and turbulent mixing
,”
Philos. Trans. R. Soc. A
368
,
1809
1828
(
2010
).
13.
A. W.
Cook
,
W.
Cabot
, and
P. L.
Miller
, “
The mixing transition in Rayleigh–Taylor instability
,”
J. Fluid Mech.
511
,
333
362
(
2004
).
14.
D. H.
Olson
and
J. W.
Jacobs
, “
Experimental study of Rayleigh–Taylor instability with a complex initial perturbation
,”
Phys. Fluids
21
,
034103
(
2009
).
15.
S. I.
Abarzhi
and
W. A.
Goddard
, “
Interfaces and mixing: Nonequilibrium transport across the scales
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
18171
(
2019
).
16.
S. I.
Abarzhi
,
S.
Gauthier
, and
K. R.
Sreenivasan
, “
Turbulent mixing and beyond: Non-equilibrium processes from atomistic to astrophysical scales
,”
Philos. Trans. R. Soc. A
371
,
20120435
(
2013
).
17.
H.
Hwang
and
S. I.
Abarzhi
,
Two-Dimensional Scale-Dependent Rayleigh–Taylor Dynamics with Variable Acceleration in a Finite-Size Domain
(
Center for Turbulence Research Annual Research Briefs
,
Stanford University
,
2020
), pp.
371
382
.
18.
H.
Hwang
,
W. H. R.
Chan
,
S. S.
Jain
, and
S. I.
Abarzhi
,
Linear Two-Dimensional Rayleigh–Taylor Dynamics with Variable Acceleration: Comparisons Between Theory and Simulations
(
Center for Turbulence Research
,
Stanford University
,
2020
), pp.
409
420
.
19.
N. C.
Swisher
,
C.
Kuranz
,
W. D.
Arnettt
,
O.
Hurricane
,
H.
Robey
,
B. A.
Remington
, and
S. I.
Abarzhi
, “
Rayleigh–Taylor mixing in supernova experiments
,”
Phys. Plasmas
22
,
102707
(
2015
).
20.
A.
Naveh
,
D. L.
Hill
,
M. T.
Matthews
, and
S. I.
Abarzhi
, “
Early- and late-time evolution of Rayleigh–Taylor instability in a finite-sized domain by means of group theory analysis
,”
Fluid Dyn. Res.
52
,
025504
(
2020
).
21.
H. F.
Robey
,
Y.
Zhou
,
A. C.
Buckingham
,
P.
Keiter
,
B. A.
Remington
, and
R. P.
Drake
, “
The time scale for the transition to turbulence in a high Reynolds number, accelerated flow
,”
Phys. Plasmas
10
,
614
622
(
2003
).
22.
E. E.
Meshkov
, “
Some peculiar features of hydrodynamic instability development
,”
Philos. Trans. R. Soc. A
371
,
20120288
(
2013
).
23.
A. W.
Cook
and
P. E.
Dimotakis
, “
Transition stages of Rayleigh–Taylor instability between miscible fluids
,”
J. Fluid Mech.
443
,
69
99
(
2001
).
24.
D. L.
Youngs
, “
The density ratio dependence of self-similar Rayleigh–Taylor mixing
,”
Philos. Trans. R. Soc. A
371
,
20120173
(
2013
).
25.
H.
Liang
,
X.
Hu
,
X.
Huang
, and
J.
Xu
, “
Direct numerical simulations of multi-mode immiscible Rayleigh–Taylor instability with high Reynolds numbers
,”
Phys. Fluids
31
,
112104
(
2019
).
26.
A.
Hamzehloo
,
P.
Bartholomew
, and
S.
Laizet
, “
Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers
,”
Phys. Fluids
33
,
054114
(
2021
).
27.
L.
Yang
,
C.
Shu
,
Z.
Chen
,
G.
Hou
, and
Y.
Wang
, “
An improved multiphase lattice Boltzmann flux solver for the simulation of incompressible flow with large density ratio and complex interface
,”
Phys. Fluids
33
,
033306
(
2021
).
28.
T.
Lyubimova
,
A.
Vorobev
, and
S.
Prokopev
, “
Rayleigh–Taylor instability of a miscible interface in a confined domain
,”
Phys. Fluids
31
,
014104
(
2019
).
29.
Y.
Li
,
R.
Samtaney
, and
V.
Wheatley
, “
The Richtmyer–Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics
,”
Matter Radiat. Extremes
3
,
207
218
(
2018
).
30.
K.
Kadau
,
J. L.
Barber
,
T. C.
Germann
,
B. L.
Holian
, and
B. J.
Alder
, “
Atomistic methods in fluid simulation
,”
Philos. Trans. R. Soc. A
368
,
1547
1560
(
2010
).
31.
J.
Ding
,
P.
Sun
,
S.
Huang
, and
X.
Luo
, “
Single- and dual-mode Rayleigh–Taylor instability at microscopic scale
,”
Phys. Fluids
33
,
042102
(
2021
).
32.
P.
Ramaprabhu
,
G.
Dimonte
,
P.
Woodward
,
C.
Fryer
,
G.
Rockefeller
,
K.
Muthuraman
,
P.-H.
Lin
, and
J.
Jayaraj
, “
The late-time dynamics of the single-mode Rayleigh–Taylor instability
,”
Phys. Fluids
24
,
074107
(
2012
).
33.
J.
Glimm
,
D. H.
Sharp
,
T.
Kaman
, and
H.
Lim
, “
New directions for Rayleigh–Taylor mixing
,”
Philos. Trans. R. Soc. A
371
,
20120183
(
2013
).
34.
Z.-X.
Hu
,
Y.-S.
Zhang
,
B.
Tian
,
Z.
He
, and
L.
Li
, “
Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage
,”
Phys. Fluids
31
,
104108
(
2019
).
35.
T.
Luo
,
J.
Wang
,
C.
Xie
,
M.
Wan
, and
S.
Chen
, “
Effects of compressibility and Atwood number on the single-mode Rayleigh–Taylor instability
,”
Phys. Fluids
32
,
012110
(
2020
).
36.
G.
Terrones
and
T.
Heberling
, “
Rayleigh–Taylor instability at spherical interfaces between viscous fluids: The fluid/fluid interface
,”
Phys. Fluids
32
,
094105
(
2020
).
37.
G. G. H.
Wolf
, “
Dynamic stabilization of the Rayleigh–Taylor instability of miscible liquids and the related ‘frozen waves
,’”
Phys. Fluids
30
,
021701
(
2018
).
38.
R.
Zanella
,
G.
Tegze
,
R. L.
Tellier
, and
H.
Henry
, “
Two-and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model
,”
Phys. Fluids
32
,
124115
(
2020
).
39.
I.
Yilmaz
, “
Analysis of Rayleigh–Taylor instability at high Atwood numbers using fully implicit, non-dissipative, energy-conserving large eddy simulation algorithm
,”
Phys. Fluids
32
,
054101
(
2020
).
40.
S. I.
Abarzhi
and
K. C.
Williams
, “
Scale-dependent Rayleigh–Taylor dynamics with variable acceleration by group theory approach
,”
Phys. Plasmas
27
,
072107
(
2020
).
41.
J. W.
Jacobs
and
I.
Catton
, “
Three-dimensional Rayleigh–Taylor instability part 2. Experiment
,”
J. Fluid Mech.
187
,
353
371
(
1988
).
42.
D. L.
Hill
,
A. K.
Bhowmick
,
D. V.
Ilyin
, and
S. I.
Abarzhi
, “
Group theory analysis of early-time dynamics of Rayleigh–Taylor instability with time varying acceleration
,”
Phys. Rev. Fluids
4
,
063905
(
2019
).
43.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics, Vol.6: Fluid Mechanics
, 2nd ed. (
Pergamon Press
,
New York
,
1987
), pp.
336
343
.
44.
P. R.
Garabedian
, “
On steady-state bubbles generated by Taylor instability
,”
Proc. R. Soc. A
241
,
423
(
1957
).
45.
S. I.
Abarzhi
and
N. A.
Inogamov
, “
Stationary solutions in the Rayleigh–Taylor instability for spatially periodic flow
,”
J. Exp. Theor. Phys.
80
,
132
143
(
1995
).
46.
S. I.
Abarzhi
, “
Stationary solution of the Rayleigh–Taylor instability for spatially periodic flows: Questions of uniqueness, dimensionality, and universality
,”
J. Exp. Theor. Phys.
83
,
1012
1026
(
1996
).
47.
R. M.
Davies
and
G. I.
Taylor
, “
The mechanics of large bubbles rising through extended liquids and through liquids in tubes
,”
Proc. R. Soc. A
200
,
375
390
(
1950
).
48.
D.
Layzer
, “
On the instability of superposed fluids in a gravitational field
,”
Astrophys. J.
122
,
1
(
1955
).
49.
U.
Alon
,
J.
Hecht
,
D.
Offer
, and
D.
Shvarts
, “
Power-laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios
,”
Phys. Rev. Lett.
74
,
534
(
1995
).
50.
S. I.
Abarzhi
, “
Length scale for bubble problem in Rayleigh–Taylor instability
,”
Phys. Fluids
11
,
940
942
(
1999
).
You do not currently have access to this content.