Our recent study has shown that the representative phenomena of liquid helium-4 rotating in a cylinder could be simulated by solving the two-fluid model using smoothed-particle hydrodynamics (SPH) after reformulating the viscosity to conserve the rotational angular momentum. Specifically, the emergence of multiple parallel vortices and their rigid-body rotations were observed in our previous SPH simulations. The reported scheme is based on a classical approximation that assumes the fluid forces of both components and their interactions, with the expectation of functioning as a coarse-grained model of existing approximations that couple a microscopic model and the Navier–Stokes equation. Based on previous studies, this paper proposes an improved SPH scheme that explicitly incorporates vortex dynamics into SPH to reproduce vortex lattices, which was not possible in previous studies. Consequently, our improved scheme was observed to reproduce vortex lattices by introducing the Magnus force and interaction forces among vortices into the reformulated two-fluid model. The spinning of the vortices and rigid-body rotations were also observed. The number of vortices showed a certain agreement with Feynman's rule after the model parameter was optimized. Notably, from a scientific point of view, such vortex lattices are reproduced by the classical-mechanical approximation. We hope that our model will help physicists studying low-temperature physics find a new way of approaching this bizarre phenomenon that has attracted attention for more than 80 years.

1.
L.
TISZA
, “
Transport phenomena in helium II
,”
Nature
141
,
913
(
1938
).
2.
L.
Landau
, “
Theory of the superfluidity of helium II
,”
Phys. Rev.
60
,
356
(
1941
).
3.
C.
Gorter
and
J.
Mellink
, “
On the irreversible processes in liquid helium II
,”
Physica
15
,
285
(
1949
).
4.
O. C.
Idowu
,
D.
Kivotides
,
C. F.
Barenghi
, and, and
D. C.
Samuels
,
Numerical Methods for Coupled Normal-Fluid and Superfluid Flows in Helium II
(
Springer
,
Berlin/Heidelberg
,
2001
), pp.
162
176
.
5.
S.
Yui
,
M.
Tsubota
, and
H.
Kobayashi
, “
Three-dimensional coupled dynamics of the two-fluid model in superfluid 4 He: Deformed velocity profile of normal fluid in thermal counterflow
,”
Phys. Rev. Lett.
120
,
155301
(
2018
).
6.
C. L.
Horner
and
R. A.
Van Gorder
, “
Dynamics of quantized vortex filaments under a local induction approximation with second-order correction
,”
Phys. Fluids
31
,
065103
(
2019
).
7.
S.
Yui
,
H.
Kobayashi
,
M.
Tsubota
, and
W.
Guo
, “
Fully coupled two-fluid dynamics in superfluid 4 He: Anomalous anisotropic velocity fluctuations in counterflow
,”
Phys. Rev. Lett.
124
,
155301
(
2020
).
8.
S.
Tsuzuki
, “
Particle approximation of the two-fluid model for superfluid 4He using smoothed particle hydrodynamics
,”
J. Phys. Commun.
5
,
035001
(
2021
).
9.
S.
Yoshida
 et al, “
In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
,”
Cryogenics
91
,
27
(
2018
).
10.
Y.
Ezoe
 et al, “
Cooling system for the resolve onboard XRISM
,”
Cryogenics
108
,
103016
(
2020
).
11.
P.
Woods
, “
The Spitzer space telescope
,”
Nat. Astron.
4
,
306
(
2020
).
12.
M. J.
DiPirro
 et al, “
Cryocooling technologies for the Origins Space Telescope
,”
J. Astron. Telesc., Instrum., Syst.
7
(
1
),
011008
(
2021
).
13.
D. W.
Condiff
and
J. S.
Dahler
, “
Fluid mechanical aspects of antisymmetric stress
,”
Phys. Fluids
7
,
842
(
1964
).
14.
K.
Müller
,
D. A.
Fedosov
, and
G.
Gompper
, “
Smoothed dissipative particle dynamics with angular momentum conservation
,”
J. Comput. Phys.
281
,
301
(
2015
).
15.
S. K.
Nemirovskii
, “
Quantum turbulence: Theoretical and numerical problems
,”
Phys. Rep.
524
,
85
(
2013
).
16.
I. N.
Adamenko
,
K. E.
Nemchenko
,
I. V.
Tanatarov
, and
A. F. G.
Wyatt
, “
Pressure of thermal excitations in superfluid helium
,”
J. Phys.: Condens. Matter
20
,
245103
(
2008
).
17.
A.
Schmitt
,
Introduction to Superfluidity, Lecture Notes in Physics
(
Springer
,
2015
), Vol.
888
.
18.
K.-H.
Bennemann
and
J. B.
Ketterson
,
Novel Superfluids
(
Oxford University Press
,
Oxford
,
2013
), Vol.
1
.
19.
C.
Hammond
, “
The elements
,”
Handbook Chemistry Physics
(
CRC Press
,
2000
), Vol.
81
.
20.
J. J.
Monaghan
and
J. C.
Lattanzio
, “
A refined particle method for astrophysical problems
,”
Astron. Astrophys.
149
,
135
(
1985
).
21.
J. J.
Monaghan
, “
Smoothed particle hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
30
,
543
(
1992
).
22.
X.
Hu
and
N.
Adams
, “
A multi-phase SPH method for macroscopic and mesoscopic flows
,”
J. Comput. Phys.
213
,
844
(
2006
).
23.
M.
Robinson
,
M.
Ramaioli
, and
S.
Luding
, “
Fluid-article flow simulations using two-way-coupled mesoscale SPH-DEM and validation
,”
Int. J. Multiphase Flow
59
,
121
(
2014
).
24.
Y.
He
 et al, “
A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces
,”
Powder Technol.
338
,
548
(
2018
).
25.
L.
Verlet
, “
Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
26.
A.
Shakibaeinia
and
Y.-C.
Jin
, “
MPS mesh-free particle method for multiphase flows
,”
Comput. Methods Appl. Mech. Eng.
229–232
,
13–26
(
2012
).
27.
C.
Zhang
,
X.
Hu
, and
N.
Adams
, “
A weakly compressible SPH method based on a low-dissipation Riemann solver
,”
J. Comput. Phys.
335
,
605
(
2017
).
28.
A.
Colagrossi
and
M.
Landrini
, “
Numerical simulation of interfacial flows by smoothed particle hydrodynamics
,”
J. Comput. Phys.
191
,
448
(
2003
).
29.
S.
Marrone
 et al, “
SPH model for simulating violent impact flows
,”
Comput. Methods Appl. Mech. Eng.
200
,
1526
(
2011
).
30.
A.
Pannizo
, “
Physical and numerical modelling of subaerial landslide generated waves
,” Ph. D. thesis (
Universita degli studi di L'Aquila
,
L'Aquila
,
2004
).
31.
Y.
Imoto
,
S.
Tsuzuki
, and
D.
Nishiura
, “
Convergence study and optimal weight functions of an explicit particle method for the incompressible Navier–Stokes equations
,”
Comput. Part. Mech.
6
,
671
(
2019
).
32.
X.
Xu
and
X.-L.
Deng
, “
An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids
,”
Comput. Phys. Commun.
201
,
43
(
2016
).
33.
D.
Luebke
, “
CUDA: Scalable parallel programming for high-performance scientific computing
,”
in 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
(
IEEE
,
2008
), pp.
836
838
.
34.
P.
Ramachandran
and
K.
Puri
, “
PySPH: A framework for parallel particle simulations
,” in
Proceedings of the 3rd International Conference on Particle-Based Methods
(
Particles
2013
),
Stuttgart, Germany
, 2013.
35.
C. J.
Pethick
and
H.
Smith
,
Bose–Einstein Condensation in Dilute Gases
(
Cambridge University Press
,
2008
).
36.
C.
Konrad
,
Report No. RR-6693
(
INRIA
,
2008
).
37.
S.
Aluru
and
F. E.
Sevilgen
, “
Parallel domain decomposition and load balancing using space-filling curves
,” in
Proceedings Fourth International Conference on High-Performance Computing
(
IEEE
,
1997
), pp.
230
235
.
38.
S.
Tsuzuki
and
T.
Aoki
, “
Effective dynamic load balance using space-filling curves for large-scale SPH simulations on GPU-rich supercomputers
,” in
Proceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '16)
,
Piscataway, NJ
(
IEEE Press
,
2016
), pp.
1
8
.
39.
C.
Muelder
and
K.
Ma
, “
Rapid graph layout using space filling curves
,”
IEEE Trans. Visualization Comput. Graph.
14
,
1301
(
2008
).
40.
S.
Tsuzuki
,
D.
Yanagisawa
, and
K.
Nishinari
, “
Auto-generation of centerline graphs from geometrically complex roadmaps of real-world traffic systems using hierarchical quadtrees for cellular automata simulations
,”
Inf. Sci.
504
,
161
(
2019
).
41.
W. F.
Vinen
and
J. J.
Niemela
, “
Quantum turbulence
,”
J. Low Temp. Phys.
128
,
167
(
2002
).
42.
R.
Feynman
,
Progress in Low Temperature Physics
(
Elsevier
,
1955
).
43.
S. W.
Van Sciver
and
C. F.
Barenghi
, “
Visualisation of quantum turbulence
,” in
Quantum Turbulence
, Progress in Low Temperature Physics Vol.
16
, edited by
M.
Tsubota
and
W.
Halperin
(
Elsevier
,
2009
), Chap. 5, pp.
247
303
.
44.
See
W.
Rasband
, http://imagej.nih.gov/ij/ for “ImageJ” (
2011
).
45.
M. D.
Abràmoff
,
D. P. J.
Magalhães
, and
D. S. J.
Ram
, “
Image processing with ImageJ
,”
Biophotonics Int.
11
,
36
(
2004
).
46.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
(
2012
).
47.
W. F.
Vinen
, “
The detection of single quanta of circulation in liquid helium II
,”
Proc. R. Soc. London, Ser. A
260
,
218
(
1961
).
48.
Z. X.
Liang
,
Z. D.
Zhang
, and
W. M.
Liu
, “
Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential
,”
Phys. Rev. Lett.
94
,
050402
(
2005
).
49.
A.-C.
Ji
,
W. M.
Liu
,
J. L.
Song
, and
F.
Zhou
, “
Dynamical creation of fractionalized vortices and vortex lattices
,”
Phys. Rev. Lett.
101
,
010402
(
2008
).
50.
D.-S.
Wang
,
X.-H.
Hu
,
J.
Hu
, and
W. M.
Liu
, “
Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity
,”
Phys. Rev. A
81
,
025604
(
2010
).
51.
P. A.
Andreev
,
I. N.
Mosaki
, and
M. I.
Trukhanova
, “
Quantum hydrodynamics of the spinor Bose-Einstein condensate at non-zero temperatures
,”
Phys. Fluids
33
,
067108
(
2021
).
52.
E.
Rusaouen
,
B.
Chabaud
,
J.
Salort
, and
P.-E.
Roche
, “
Intermittency of quantum turbulence with superfluid fractions from 0% to 96%
,”
Phys. Fluids
29
,
105108
(
2017
).
53.
M.
La Mantia
, “
Particle dynamics in wall-bounded thermal counterflow of superfluid helium
,”
Phys. Fluids
29
,
065102
(
2017
).
54.
M.
La Mantia
, “
Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section
,”
Phys. Fluids
28
,
024102
(
2016
).
You do not currently have access to this content.