A unified expression for high-speed compressible segregated consistent lattice Boltzmann methods, namely, pressure-based and improved density-based methods, is given. It is theoretically proved that in the absence of forcing terms, these approaches are strictly identical and can be recast in a unique form. An important result is that the difference with classical density-based methods lies in the addition of fourth-order term in the equilibrium function. It is also shown that forcing terms used to balance numerical errors in both original pressure-based and improved density-based methods can be written in a generalized way. A hybrid segregated efficient lattice-Boltzmann for compressible flow based on this unified model, equipped with a recursive regularization kernel, is proposed and successfully assessed on a wide set of test cases with and without shock waves.

1.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer International Publishing
,
2017
), Vol.
10
, pp.
978
973
.
2.
Z.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and its Applications in Engineering
(
World Scientific
,
2013
), Vol.
3
.
3.
X. W.
Shan
,
X. F.
Yuan
, and
H. D.
Chen
, “
Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation
,”
J. Fluid Mech.
550
,
413
441
(
2006
).
4.
J.
Jacob
and
P.
Sagaut
, “
Wind comfort assessment by means of large eddy simulation with lattice Boltzmann method in full scale city area
,”
Build. Environ.
139
,
110
124
(
2018
).
5.
L.
Merlier
,
J.
Jacob
, and
P.
Sagaut
, “
Lattice-Boltzmann large-eddy simulation of pollutant dispersion in street canyons including tree planting effects
,”
Atmos. Environ.
195
,
89
103
(
2018
).
6.
L.
Merlier
,
J.
Jacob
, and
P.
Sagaut
, “
Lattice-Boltzmann large-eddy simulation of pollutant dispersion in complex urban environment with dense gas effect: Model evaluation and flow analysis
,”
Build. Environ.
148
,
634
652
(
2019
).
7.
E.
Buffa
,
J.
Jacob
, and
P.
Sagaut
, “
Lattice-Boltzmann-based large-eddy simulation of high-rise building aerodynamics with inlet turbulence reconstruction
,”
J. Wind Eng. Ind. Aerodyn.
212
,
104560
(
2021
).
8.
Y.
Feng
,
J.
Miranda-Fuentes
,
S.
Guo
,
J.
Jacob
, and
P.
Sagaut
, “
ProLB: A lattice-Boltzmann solver of large-eddy simulation of atmospheric boundary layer flows
,”
J. Adv. Model. Earth Syst.
13
,
e2020MS002107
(
2021
).
9.
O.
Filippova
and
D.
Haenel
, “
A Novel lattice BGK approach for low Mach number combustion
,”
J. Comput. Phys.
158
,
139
160
(
2000
).
10.
O.
Filippova
and
D.
Haenel
, “
A Novel numerical scheme for reactive flows at low Mach numbers
,”
Comput. Phys. Commun.
129
,
267
274
(
2000
).
11.
T.
Inamuro
,
T.
Ogata
,
S.
Tajima
, and
N.
Konishi
, “
A lattice Boltzmann method for incompressible two-phase flows with large density differences
,”
J. Comput. Phys.
198
,
628
644
(
2004
).
12.
S.
Mukherjee
and
J.
Abraham
, “
A pressure-evolution-based multi-relaxation time high-density-ratio two-phase lattice-Boltzmann model
,”
Comput. Fluids
36
,
1149
1158
(
2007
).
13.
G.
Farag
,
S.
Zhao
,
T.
Coratger
,
P.
Boivin
,
G.
Chiavassa
, and
P.
Sagaut
, “
A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
,”
Phys. Fluids
32
,
066106
(
2020
).
14.
M.
Tayyab
,
B.
Radisson
,
C.
Almarcha
,
B.
Denet
, and
P.
Boivin
, “
Experimental and numerical lattice-Boltzmann investigation of the Darrieus–Landau instability
,”
Combust. Flame
221
,
103
109
(
2020
).
15.
M.
Tayyab
,
S.
Zhao
, and
P.
Boivin
, “
Lattice-Boltzmann modeling of a turbulent bluff-body stabilized flame
,”
Phys. Fluids
33
,
031701
(
2021
).
16.
I.
Cheylan
,
S.
Zhao
,
P.
Boivin
, and
P.
Sagaut
, “
Compressible pressure-based lattice-Boltzmann applied to humid air with phase change
,”
Appl. Therm. Eng.
191
,
116868
(
2021
).
17.
G.
Farag
,
S.
Zhao
,
G.
Chiavassa
, and
P.
Boivin
, “
Consistency study of lattice-Boltzmann schemes macroscopic limit
,”
Phys. Fluids
33
,
037101
(
2021
).
18.
T.
Astoul
,
G.
Wissocq
,
J.-F.
Boussuge
,
A.
Sengissen
, and
P.
Sagaut
, “
Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: A direct grid coupling approach
,” arXiv:2004.14887 (
2020
).
19.
B. J.
Palmer
and
D. R.
Rector
, “
Lattice-Boltzmann algorithm for simulating thermal two-phase flow
,”
Phys. Rev. E
61
,
5295
(
2000
).
20.
B. J.
Palmer
and
D. R.
Rector
, “
Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids
,”
J. Comput. Phys.
161
,
1
20
(
2000
).
21.
S.
Guo
,
Y.
Feng
, and
P.
Sagaut
, “
Improved standard thermal lattice Boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows
,”
Phys. Fluids
32
,
126108
(
2020
).
22.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows
,”
J. Comput. Phys.
394
,
82
99
(
2019
).
23.
S.
Guo
,
Y.
Feng
,
J.
Jacob
,
F.
Renard
, and
P.
Sagaut
, “
An efficient lattice Boltzmann method for compressible aerodynamics on d3q19 lattice
,”
J. Comput. Phys.
418
,
109570
(
2020
).
24.
F.
Renard
,
Y.
Feng
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows
,”
Comput. Fluids
219
,
104867
(
2021
).
25.
F.
Renard
,
G.
Wissocq
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
A linear stability analysis of compressible hybrid lattice Boltzmann methods
,” arXiv:2006.08477 (
2020
).
26.
G.
Wissocq
and
P.
Sagaut
, “
Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes
,” arXiv:2104.14217 [physics.flu-dyn] (
2021
).
27.
R. J.
LeVeque
,
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
(
SIAM
,
2007
).
28.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
29.
N.
Prasianakis
,
I.
Karlin
,
J.
Mantzaras
, and
K.
Boulouchos
, “
Lattice Boltzmann method with restored Galilean invariance
,”
Phys. Rev. E
79
,
066702
(
2009
).
30.
M. H.
Saadat
,
F.
Bösch
, and
I. V.
Karlin
, “
Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent
,”
Phys. Rev. E
99
,
013306
(
2019
).
31.
M.
Saadat
,
S.
Hosseini
,
B.
Dorschner
, and
I.
Karlin
, “
Extended lattice Boltzmann model for gas dynamics
,”
Phys. Fluids
33
,
046104
(
2021
).
32.
R.
Löhner
, “
Towards overcoming the LES crisis
,”
Int. J. Comput. Fluid Dyn.
33
,
87
97
(
2019
).
33.
J.
Latt
and
B.
Chopard
, “
Lattice Boltzmann method with regularized pre-collision distribution functions
,”
Math. Comput. Simul.
72
,
165
168
(
2006
).
34.
C.
Coreixas
,
G.
Wissocq
,
G.
Puigt
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
Recursive regularization step for high-order lattice Boltzmann methods
,”
Phys. Rev. E
96
,
033306
(
2017
).
35.
J.
Jacob
,
O.
Malaspinas
, and
P.
Sagaut
, “
A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation
,”
J. Turbul.
19
,
1051
1076
(
2018
).
36.
S.
Zhao
,
G.
Farag
,
P.
Boivin
, and
P.
Sagaut
, “
Toward fully conservative hybrid lattice Boltzmann methods for compressible flows
,”
Phys. Fluids
32
,
126118
(
2020
).
37.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Course of Theoretical Physics
,
1959
).
38.
S. J.
Blundell
and
K. M.
Blundell
,
Concepts in Thermal Physics
(
OUP
,
Oxford
,
2009
).
39.
O.
Le Métayer
and
R.
Saurel
, “
The Noble-Abel stiffened-gas equation of state
,”
Phys. Fluids (1994-present)
28
,
046102
(
2016
).
40.
K. H.
Kim
,
C.
Kim
, and
O.-H.
Rho
, “
Methods for the accurate computations of hypersonic flows. I. AUSMPW + scheme
,”
J. Comput. Phys.
174
,
38
80
(
2001
).
41.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science and Business Media
,
2013
).
42.
G.
Wissocq
,
C.
Coreixas
, and
J.-F.
Boussuge
, “
Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods
,”
Phys. Rev. E
102
,
053305
(
2020
).
43.
P. D.
Lax
and
X.-D.
Liu
, “
Solution of two-dimensional Riemann problems of gas dynamics by positive schemes
,”
SIAM J. Sci. Comput.
19
,
319
340
(
1998
).
44.
O.
Inoue
and
Y.
Hattori
, “
Sound generation by shock–vortex interactions
,”
J. Fluid Mech.
380
,
81
116
(
1999
).
45.
D.
Fabre
,
L.
Jacquin
, and
J.
Sesterhenn
, “
Linear interaction of a cylindrical entropy spot with a shock
,”
Phys. Fluids
13
,
2403
2422
(
2001
).
46.
G.
Farag
,
P.
Boivin
, and
P.
Sagaut
, “
Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: Linear interaction approximation results
,”
J. Fluid Mech.
871
,
865
895
(
2019
).
47.
C.
Coreixas
,
B.
Chopard
, and
J.
Latt
, “
Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations
,”
Phys. Rev. E
100
,
033305
(
2019
).
You do not currently have access to this content.