A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data driven techniques, i.e., machine learning approach, and its goal is to use any known information about the downstream flow to reconstruct the unknown or incomplete inlet boundary conditions for a numerical simulation. The European Research Community On Flow, Turbulence And Combustion (ERCOFTAC) test case of the swirling flow inside a conical diffuser is investigated. Despite its relatively simple geometry, it constitutes a very challenging test case for numerical simulations due to incomplete experimental data and to the delicate balance between core flow recirculation and boundary layer separation. Simulations are performed using both Reynolds averaged Navier–Stokes (RANS) and large-eddy simulations (LES) turbulence methods. The mean velocity and turbulence kinetic energy profiles obtained with the machine learning approach in RANS are found to be in very good agreement with the experimental measurements and the numerical predictions are greatly improved as compared to the previous results using basic inlet boundary conditions. They are indeed comparable to the best previous RANS using empirical ad hoc inlet conditions to accurately simulate the downstream flow. In LES, in addition to the mean velocity profiles, the machine learning approach also allows us to properly reconstruct the fluctuating part of the turbulent field. In particular, the methodology allows us to circumvent the lack of turbulent correlations associated with classical inlet synthetic turbulence.

1.
A.
Keating
,
U.
Piomelli
,
E.
Balaras
, and
H.-J.
Kaltenbach
, “
A priori and a posteriori tests of inflow conditions for large-eddy simulation
,”
Phys. Fluids
16
,
4696
4712
(
2004
).
2.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science & Business Media
,
2006
).
3.
G. R.
Tabor
and
M.
Baba-Ahmadi
, “
Inlet conditions for large eddy simulation: A review
,”
Comput. Fluids
39
,
553
567
(
2010
).
4.
X.
Wu
, “
Inflow turbulence generation methods
,”
Annu. Rev. Fluid Mech.
49
,
23
49
(
2017
).
5.
N. S.
Dhamankar
,
G. A.
Blaisdell
, and
A. S.
Lyrintzis
, “
Overview of turbulent inflow boundary conditions for large-eddy simulations
,”
AIAA J.
56
,
1317
1334
(
2018
).
6.
J.-L.
Aider
and
A.
Danet
, “
Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow
,”
C. R. Méc.
334
,
447
453
(
2006
).
7.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow
,”
Phys. Fluids A
4
,
1521
1530
(
1992
).
8.
R. H.
Kraichnan
, “
Diffusion by a random velocity field
,”
Phys. Fluids
13
,
22
31
(
1970
).
9.
A.
Smirnov
,
S.
Shi
, and
I.
Celik
, “
Random flow generation technique for large eddy simulations and particle-dynamics modeling
,”
J. Fluids Eng.
123
,
359
371
(
2001
).
10.
P.
Batten
,
U.
Goldberg
, and
S.
Chakravarthy
, “
Interfacing statistical turbulence closures with large-eddy simulation
,”
AIAA J.
42
,
485
492
(
2004
).
11.
L.
Davidson
and
M.
Billson
, “
Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region
,”
Int. J. Heat Fluid Flow
27
,
1028
1042
(
2006
).
12.
L.
Davidson
, “
Hybrid LES-RANS: Inlet boundary conditions for flows with recirculation
,” in
Advances in Hybrid RANS-LES Modelling
(
Springer
,
2008
), pp.
55
66
.
13.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
665
(
2003
).
14.
L.
Di Mare
,
M.
Klein
,
W.
Jones
, and
J.
Janicka
, “
Synthetic turbulence inflow conditions for large-eddy simulation
,”
Phys. Fluids
18
,
025107
(
2006
).
15.
N.
Jarrin
,
S.
Benhamadouche
,
D.
Laurence
, and
R.
Prosser
, “
A synthetic-eddy-method for generating inflow conditions for large-eddy simulations
,”
Int. J. Heat Fluid Flow
27
,
585
593
(
2006
).
16.
N.
Jarrin
,
R.
Prosser
,
J.-C.
Uribe
,
S.
Benhamadouche
, and
D.
Laurence
, “
Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method
,”
Int. J. Heat Fluid Flow
30
,
435
442
(
2009
).
17.
M.
Pamiès
,
P.-E.
Weiss
,
E.
Garnier
,
S.
Deck
, and
P.
Sagaut
, “
Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows
,”
Phys. Fluids
21
,
045103
(
2009
).
18.
R.
Poletto
,
T.
Craft
, and
A.
Revell
, “
A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES
,”
Flow, Turbul. Combust.
91
,
519
539
(
2013
).
19.
P.
Druault
,
S.
Lardeau
,
J.-P.
Bonnet
,
F.
Coiffet
,
J.
Delville
,
E.
Lamballais
,
J.-F.
Largeau
, and
L.
Perret
, “
Generation of three-dimensional turbulent inlet conditions for large-eddy simulation
,”
AIAA J.
42
,
447
456
(
2004
).
20.
A.
Ferrante
and
S.
Elghobashi
, “
A robust method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers
,”
J. Comput. Phys.
198
,
372
387
(
2004
).
21.
R. J.
Stevens
,
J.
Graham
, and
C.
Meneveau
, “
A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms
,”
Renewable Energy
68
,
46
50
(
2014
).
22.
C. D.
Pierce
and
P.
Moin
, “
Method for generating equilibrium swirling inflow conditions
,”
AIAA J.
36
,
1325
1327
(
1998
).
23.
J.
Schlüter
,
H.
Pitsch
, and
P.
Moin
, “
Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers
,”
AIAA J.
42
,
478
484
(
2004
).
24.
M.
García-Villalba
and
J.
Fröhlich
, “
LES of a free annular swirling jet—Dependence of coherent structures on a pilot jet and the level of swirl
,”
Int. J. Heat Fluid Flow
27
,
911
923
(
2006
).
25.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
258
(
1998
).
26.
J.
Jiménez
,
S.
Hoyas
,
M. P.
Simens
, and
Y.
Mizuno
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
360
(
2010
).
27.
J. H.
Lee
and
H. J.
Sung
, “
Direct numerical simulation of a turbulent boundary layer up to
reθ=2500,”
Int. J. Heat Fluid Flow
32
,
1
10
(
2011
).
28.
A.
Spille-Kohoff
and
H.-J.
Kaltenbach
, “
Generation of turbulent inflow data with a prescribed shear-stress profile
,”
Technical Report 2001-08-01
(Hermann-Fottinger Inst. fur Stromungsmechanik, Technische Univ. Berlin,
2001
).
29.
P. D.
Clausen
,
S. G.
Koh
, and
D. H.
Wood
, “
Measurements of a swirling turbulent boundary layer developing in a conical diffuser
,”
Exp. Therm. Fluid Sci.
6
,
39
48
(
1993
).
30.
C.
Duprat
, “
Simulation numérique instationnaire des écoulements turbulents dans les diffuseurs des turbines hydrauliques en vue de l'amélioration des performances
,” Ph.D. thesis (
Institut National Polytechnique de Grenoble (INPG)
Grenoble, France
,
2010
).
31.
A.
McDonald
,
R.
Fox
, and
R.
Van Dewoestine
, “
Effects of swirling inlet flow on pressure recovery in conical diffusers
,”
AIAA J.
9
,
2014
2018
(
1971
).
32.
S.
Wilhelm
,
G.
Balarac
,
O.
Metais
, and
C.
Ségoufin
, “
Analysis of head losses in a turbine draft tube by means of 3D unsteady simulations
,”
Flow, Turbul. Combust.
97
,
1255
1280
(
2016
).
33.
S. W.
Armfield
,
N.-H.
Cho
, and
C. A. J.
Fletcher
, “
Prediction of turbulence quantities for swirling flow in conical diffusers
,”
AIAA J.
28
,
453
460
(
1990
).
34.
S.
Mauri
, “
Numerical simulation and flow analysis of an elbow diffuser
,” Ph.D. thesis (
École Polytechnique Fédérale de Lausanne (EPFL)
,
Lausanne, Switzerland
,
2002
).
35.
B. E.
Launder
and
D. B.
Spalding
, “
The numerical computation of turbulent flows
,”
Comput. Methods Appl. Mech. Eng.
3
,
269
289
(
1974
).
36.
W.
Rodi
,
J.
Bonnin
, and
T.
Buchal
, “
ERCOFTAC workshop on data bases and testing of calculation methods for turbulent flows
,” in
Part of the Proceedings of the 4th ERCOFTAC/IAHR Workshop on Refined Flow Modelling
(
University of Karsruhe
,
1995
).
37.
H.
Nilsson
,
M.
Page
,
M.
Beaudoin
,
B.
Gschaider
, and
H.
Jasak
, “
The OpenFOAM turbomachinery working-group, and conclusions from the turbomachinery session of the third openfoam workshop
,” in
IAHR: 24th Symposium on Hydraulic Machinery and Systems
, Foz Do Iguassu, Brazil (
2008
).
38.
O.
Bounous
, “
Studies of the ERCOFTAC conical diffuser with OpenFOAM
,” Research Report 2008:05 (Department of Applied Mechanics Chalmers University of Technology, Göteborg, Sweeden,
2008
).
39.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
40.
F.-A.
Payette
, “
Simulation de l'écoulement turbulent dans les aspirateurs de turbines hydrauliques: Impact des paramètres de modélisation
,” Master's thesis
(Université Laval, Quebec, Canada
,
2008
).
41.
W.
Gyllenram
and
H.
Nilsson
, “
Very large eddy simulation of draft tube flow
,” in
Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems
,
Yokohama
,
Japan
(
IAHR
,
2006
), Vol.
159
.
42.
P.
Bélanger-Vincent
, “
Simulations avancées de l'écoulement turbulent dans les aspirateurs de turbines hydrauliques
,” (Master's thesis,
Université Laval
,
Quebec, Canada
,
2010
).
43.
A.
Taheri
, “
Detached eddy simulation of unsteady turbulent flows in the draft tube of a bulb turbine
,” Ph.D. thesis (
Université Laval
,
Quebec, Canada
,
2015
).
44.
K.
Fukami
,
Y.
Nabae
,
K.
Kawai
, and
K.
Fukagata
, “
Synthetic turbulent inflow generator using machine learning
,”
Phys. Rev. Fluids
4
,
064603
(
2019
).
45.
A.
Corsini
,
G.
Delibra
,
M.
Giovannelli
, and
S.
Traldi
, “
Machine learnt synthetic turbulence for LES inflow conditions
,” in
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2020
).
46.
J.
Kim
and
C.
Lee
, “
Deep unsupervised learning of turbulence for inflow generation at various Reynolds numbers
,”
J. Comput. Phys.
406
,
109216
(
2020
).
47.
R.
Eisinger
and
A.
Ruprecht
, “
Automatic shape optimization of hydro turbine components based on CFD
,”
TASK Q
6
,
101
111
(
2002
).
48.
B. D.
Marjavaara
and
T. S.
Lundström
, “
Redesign of a sharp heel draft tube by a validated CFD-optimization
,”
Int. J. Numer. Methods Fluids
50
,
911
924
(
2006
).
49.
B. D.
Marjavaara
,
T. S.
Lundström
,
T.
Goel
,
Y.
Mack
, and
W.
Shyy
, “
Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts
,”
J. Fluids Eng.
129
,
1228
1240
(
2007
).
50.
J.
McNabb
,
C.
Devals
,
S.
Kyriacou
,
N.
Murry
, and
B.
Mullins
, “
CFD based draft tube hydraulic design optimization
,”
IOP Conf. Ser.
22
,
012023
(
2014
).
51.
S.
Galván
,
M.
Reggio
, and
F.
Guibault
, “
Optimization of the inlet velocity profile in a conical diffuser
,” in
Fluids Engineering Division Summer Meeting
(
American Society of Mechanical Engineers
,
2012
), Vol.
44755
, pp.
125
134
.
52.
S.
Galván
,
M.
Reggio
, and
F.
Guibault
, “
Numerical optimization of the inlet velocity profile ingested by the conical draft tube of a hydraulic turbine
,”
J. Fluids Eng.
137
,
071102
(
2015
).
53.
M.
Kato
, “
The modelling of turbulent flow around stationary and vibrating square cylinders
,”
Turbulent Shear Flow
1
,
10
14
(
1993
).
54.
P. E.
Smirnov
and
F. R.
Menter
, “
Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term
,”
J. Turbomach.
131
,
041010
(
2009
).
55.
ANSYS
,
Solver Theory Guide
, Ansys CFX Release 19 (
ANSYS
,
2018
).
56.
A.
Gehrer
,
H.
Benigni
, and
M.
Köstenberger
, “
Unsteady simulation of the flow through a horizontal-shaft bulb turbine
,” in
Proceedings of the 22nd IAHR Symposium on Hydraulic Maschines and Systems, Stockholm (
2004
).
57.
D.
Jošt
and
A.
Škerlavaj
, “
Efficiency prediction for a low head bulb turbine with SAS SST and zonal LES turbulence models
,”
IOP Conf. Ser.
22
,
022007
(
2014
).
58.
M.
Lesieur
,
O.
Métais
,
P.
Comte
 et al.,
Large-Eddy Simulations of Turbulence
(
Cambridge University Press
,
2005
).
59.
V.
Moureau
,
P.
Domingo
, and
L.
Vervisch
, “
Design of a massively parallel CFD code for complex geometries
,”
C. R. Méc.
339
,
141
148
(
2011
).
60.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
61.
P.
Benard
,
G.
Balarac
,
V.
Moureau
,
C.
Dobrzynski
,
G.
Lartigue
, and
Y.
D'Angelo
, “
Mesh adaptation for large-eddy simulations in complex geometries
,”
Int. J. Numer. Methods Fluids
81
,
719
(
2016
).
62.
C.
Duprat
,
G.
Balarac
,
O.
Métais
,
P.
Congedo
, and
O.
Brugière
, “
A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient
,”
Phys. Fluids
23
,
015101
(
2011
).
63.
I.
Goodfellow
,
Y.
Bengio
,
A.
Courville
, and
Y.
Bengio
,
Deep Learning
(
MIT Press
,
Cambridge
,
2016
), Vol.
1
.
64.
D.
Carl
,
A Practical Guide to Splines
(
Springer
,
2001
).
65.
I.
Sobol
and
Y. L.
Levitan
, “
The production of points uniformly distributed in a multidimensional cube
,”
IPM Akad. Nauk SSSR
40
,
30
(
1976
).
66.
J.
Bergstra
and
Y.
Bengio
, “
Random search for hyper-parameter optimization
,”
J. Mach. Learn. Res.
13
(
10
),
281
305
(
2012
).
67.
C.
Liu
,
B.
Zoph
,
M.
Neumann
,
J.
Shlens
,
W.
Hua
,
L.-J.
Li
,
L.
Fei-Fei
,
A.
Yuille
,
J.
Huang
, and
K.
Murphy
, “
Progressive neural architecture search
,” in
Proceedings of the European Conference on Computer Vision (ECCV) (Springer,
2018
), pp.
19
34
.
68.
M.
Feurer
and
F.
Hutter
, “
Hyperparameter optimization
,” in
Automated Machine Learning
(
Springer
,
Cham
,
2019
), pp.
3
33
.
69.
T.
Elsken
,
J. H.
Metzen
,
F.
Hutter
 et al., “
Neural architecture search: A survey
,”
J. Mach. Learn. Res.
20
(
55
),
1
21
(
2019
).
70.
D.
Clevert
,
T.
Unterthiner
, and
S.
Hochreiter
, “
Fast and accurate deep network learning by exponential linear units (ELUs)
,” arXiv:1511.07289 (
2015
).
71.
V.
Nair
and
G. E.
Hinton
, “
Rectified linear units improve restricted Boltzmann machines
,” in
ICML'10: Proceedings of the 27th International Conference on International Conference on Machine Learning
(
2010
).
72.
X.
Glorot
,
A.
Bordes
, and
Y.
Bengio
, “
Deep sparse rectifier neural networks
,” in
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
(
JMLR Workshop and Conference Proceedings
,
2011
), pp.
315
323
.
73.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting
,”
J. Mach. Learn. Res.
15
(
56
),
1929
1958
(
2014
).
74.
T.
Dozat
, “
Incorporating Nesterov momentum into Adam,” in ICLR 2016 workshop
(
2016
).
You do not currently have access to this content.