In recent years, the near-wall reverse flow (NWRF) phenomenon taking place in wall-bounded turbulent flows has become the subject of comprehensive theoretical and experimental study. Currently, it is generally accepted that the NWRF events are caused by strong near-wall vortical structures located in the buffer region of the boundary layer, which are either quasi-streamwise vortices tilted with respect to a mean flow direction or transversely oriented hairpin-like vortices. In the present investigations, we demonstrate that there is at least one more mechanism that differs from the existing ones. Considering a fully developed turbulent duct flow studied by direct numerical simulations at a relatively low Reynolds number Reτ = 204, we found the presence of the NWRF events in the corner regions. The frequency of their appearance is three orders of magnitude higher than those appearing in the central area of the wall, and their lifetime is about three times longer. The mechanism of their formation is found to be associated with streamwisely oriented vortical structures located near the corner.

1.
A. E.
Perry
and
M. S.
Chong
, “
A series-expansion study of the Navier–Stokes equations with applications to three-dimensional separation patterns
,”
J. Fluid Mech.
173
,
207
(
1986
).
2.
H.
Eckelmann
, “
The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow
,”
J. Fluid Mech.
65
,
439
(
1974
).
3.
K. J.
Colella
and
W. L.
Keith
, “
Measurements and scaling of wall shear stress fluctuations
,”
Exp. Fluids
34
,
253
(
2003
).
4.
Z.
Hu
,
C. L.
Morfey
, and
N. D.
Sandham
, “
Wall pressure and shear stress spectra from direct simulations of channel flow
,”
AIAA J.
44
,
1541
(
2006
).
5.
P.
Lenaers
,
Q.
Li
,
G.
Brethouwer
,
P.
Schlatter
, and
R.
Örlü
, “
Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence
,”
Phys. Fluids
24
,
035110
(
2012
).
6.
D.
Zaripov
,
V.
Ivashchenko
,
R.
Mullyadzhanov
,
R.
Li
,
N.
Mikheev
, and
C. J.
Kähler
, “
On a mechanism of near-wall reverse flow formation in a turbulent duct flow
,”
J. Fluid Mech.
923
,
A20
(
2021
).
7.
M. S.
Chong
,
J. P.
Monty
,
C.
Chin
, and
I.
Marusic
, “
The topology of skin friction and surface vorticity fields in wall-bounded flows
,”
J. Turbul.
13
,
N6
(
2012
).
8.
C.
Diaz-Daniel
,
S.
Laizet
, and
J. C.
Vassilicos
, “
Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer
,”
Phys. Fluids
29
,
055102
(
2017
).
9.
R.
Vinuesa
,
R.
Örlü
, and
P.
Schlatter
, “
Characterisation of backflow events over a wing section
,”
J. Turbul.
18
,
170
(
2017
).
10.
R.
Jalalabadi
and
H. J.
Sung
, “
Influence of backflow on skin friction in turbulent pipe flow
,”
Phys. Fluids
30
,
065104
(
2018
).
11.
R. C.
Chin
,
J. P.
Monty
,
M. S.
Chong
, and
I.
Marusic
, “
Conditionally averaged flow topology about a critical point pair in the skin friction field of pipe flows using direct numerical simulations
,”
Phys. Rev. Fluids
3
,
114607
(
2018
).
12.
J. I.
Cardesa
,
J. P.
Monty
,
J.
Soria
, and
M. S.
Chong
, “
The structure and dynamics of backflow in turbulent channels
,”
J. Fluid Mech.
880
,
R3
(
2019
).
13.
X.
Wu
,
M.
Cruickshank
, and
S.
Ghaemi
, “
Negative skin friction during transition in a zero-pressure-gradient flat-plate boundary layer and in pipe flows with slip and no-slip boundary conditions
,”
J. Fluid Mech.
887
,
A26
(
2020
).
14.
B.
Guerrero
,
M. F.
Lambert
, and
R. C.
Chin
, “
Extreme wall shear stress events in turbulent pipe flows: Spatial characteristics of coherent motions
,”
J. Fluid Mech.
904
,
A18
(
2020
).
15.
C.
Brücker
, “
Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging
,”
Phys. Fluids
27
,
031705
(
2015
).
16.
C. E.
Willert
,
C.
Cuvier
,
J. M.
Foucaut
,
J.
Klinner
,
M.
Stanislas
,
J. P.
Laval
,
S.
Srinath
,
J.
Soria
,
O.
Amili
,
C.
Atkinson
,
C. J.
Kähler
,
S.
Scharnowski
,
R.
Hain
,
A.
Schröder
,
R.
Geisler
,
J.
Agocs
, and
A.
Röse
, “
Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer
,”
Exp. Therm. Fluid Sci.
91
,
320
(
2018
).
17.
M.
Bross
,
T.
Fuchs
, and
C. J.
Kähler
, “
Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers
,”
J. Fluid Mech.
873
,
287
(
2019
).
18.
P.
Fischer
,
J.
Kruse
,
J.
Mullen
,
H.
Tufo
,
J.
Lottes
, and
S.
Kerkemeier
, “Nek5000–open source spectral element CFD solver” (Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL,
2008
).
19.
X. I. A.
Yang
,
J.
Hong
,
M.
Lee
, and
X. L. D.
Huang
, “
Grid resolution requirement for resolving rare and high intensity wall-shear stress events in direct numerical simulations
,”
Phys. Rev. Fluids
6
,
054603
(
2021
).
20.
C.
Cheng
,
W.
Li
,
A.
Lozano-Durán
, and
H.
Liu
, “
On the structure of streamwise wall-shear stress fluctuations in turbulent channel flows
,”
J. Fluid Mech.
903
,
A29
(
2020
).
21.
J.
Hwang
and
H. J.
Sung
, “
Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow
,”
Phys. Fluids
31
,
055109
(
2019
).
22.
S.
Pirozzoli
,
D.
Modesti
,
P.
Orlandi
, and
F.
Grasso
, “
Turbulence and secondary motions in square duct flow
,”
J. Fluid Mech.
840
,
631
(
2018
).
23.
J.
Ohlsson
,
P.
Schlatter
,
C.
Mavriplis
, and
D. S.
Henningson
, “The spectral-element and pseudo-spectral methods: A comparative study lecture notes,” in Computational Science and Engineering, edited by
J. S.
Hesthaven
and
E. M.
Rønquist
(
Springer
,
Berlin/Heidelberg
,
2011
), Vol. 76, pp.
459
467
.
24.
R.
Vinuesa
,
P.
Schlatter
, and
H. M.
Nagib
, “
Secondary flow in turbulent ducts with increasing aspect ratio
,”
Phys. Rev. Fluids
3
,
054606
(
2018
).
25.
J. I.
Cardesa
,
J. P.
Monty
,
J.
Soria
, and
M. S.
Chong
, “
Skin-friction critical points in wall-bounded flows
,”
J. Phys.: Conf. Ser.
506
,
012009
(
2014
).
26.
C.
Pan
and
Y.
Kwon
, “
Extremely high wall-shear stress events in a turbulent boundary layer
,”
J. Phys.: Conf. Ser.
1001
,
012004
(
2018
).
27.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
28.
A. A.
Draad
and
F. T. M.
Nieuwstadt
, “
The Earth's rotation and laminar pipe flow
,”
J. Fluid Mech.
361
,
297
(
1998
).
29.
H.
Schlichting
,
Boundary-Layer Theory
(
McGraw-Hill
,
New York
,
1979
).
You do not currently have access to this content.