In this article, we consider the linear stability of the two-dimensional flow induced by the linear stretching of a surface in the streamwise direction. The basic flow is a rare example of an exact analytical solution of the Navier–Stokes equations. Using results from a large Reynolds number asymptotic study and a highly accurate spectral numerical method, we show that this flow is linearly unstable to disturbances in the form of Tollmien–Schlichting waves. Previous studies have shown that this flow is linearly stable. However, our results show that this is only true for Görtler-type disturbances.

1.
B. C.
Sakiadis
, “
Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface
,”
AIChE J.
7
,
221
(
1961
).
2.
S. L.
Waters
, “
Solute uptake through the walls of a pulsating channel
,”
J. Fluid Mech.
433
,
193
(
2001
).
3.
J.
Vleggaar
, “
Laminar boundary layer behaviour on continuous, accelerating surfaces
,”
Chem. Eng. Sci.
32
,
1517
(
1977
).
4.
L. J.
Crane
, “
Flow past a stretching plate
,”
Z. Angew. Math. Phys.
21
,
645
(
1970
).
5.
C. Y.
Wang
, “
The three-dimensional flow due to a stretching flat surface
,”
Phys. Fluids
27
,
1915
(
1984
).
6.
R.
Ayats
,
F.
Marques
,
A.
Meseguer
, and
P. D.
Weidman
, “
Flows between orthogonally stretching parallel plates
,”
Phys. Fluids
33
,
024103
(
2021
).
7.
E.
Magyari
and
B.
Keller
, “
Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface
,”
J. Phys. D
32
,
577
(
1999
).
8.
P. S.
Gupta
and
A. S.
Gupta
, “
Heat and mass transfer on a stretching sheet with suction or blowing
,”
Can. J. Chem. Eng.
55
,
744
(
1977
).
9.
T. T.
Al-Housseiny
and
H. A.
Stone
, “
On boundary-layer flows induced by the motion of stretching surfaces
,”
J. Fluid Mech.
706
,
597
(
2012
).
10.
A.
Chakrabarti
and
A. S.
Gupta
, “
Hydromagnetic flow and heat transfer over a stretching sheet
,”
Q. Appl. Math.
37
,
73
(
1979
).
11.
K. R.
Rajagopal
,
T. Y.
Na
, and
A. S.
Gupta
, “
Flow of a viscoelastic fluid over a stretching sheet
,”
Rheol. Acta
23
,
213
(
1984
).
12.
N.
Riley
and
P. D.
Weidman
, “
Multiple solutions of the Falkner–Skan equation for flow past a stretching boundary
,”
SIAM J. Appl. Math.
49
,
1350
(
1989
).
13.
S.
Liao
, “
On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet
,”
J. Fluid Mech.
488
,
189
(
2003
).
14.
S. N.
Bhattacharyya
and
A. S.
Gupta
, “
On the stability of viscous flow over a stretching sheet
,”
Q. Appl. Math.
43
,
359
(
1985
).
15.
H. S.
Takhar
,
M.
Ali
, and
A. S.
Gupta
, “
Stability of magnetohydrodynamic flow over a stretching sheet
,” in
Liquid Metal Magnetohydrodynamics
, 1st ed., edited by
J. J.
Lielpeteris
and
R. J.
Moreau
(
Springer Netherlands
,
Dordrecht
,
1989
), Vol.
10
, Chap. 57, pp.
465
471
.
16.
B. S.
Dandapat
,
L. E.
Holmedal
, and
H. I.
Andersson
, “
Stability of flow of a viscoelastic fluid over a stretching sheet
,”
Arch. Mech.
46
,
829
(
1994
).
17.
J. M.
Davis
and
C.
Pozrikidis
, “
Linear stability of viscous flow induced by surface stretching
,”
Arch. Appl. Mech.
84
,
985
(
2014
).
18.
R. J.
Lingwood
, “
Absolute instability of the boundary layer on a rotating disk
,”
J. Fluid Mech.
299
,
17
(
1995
).
19.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
2001
).
20.
R.
Miller
,
S. J.
Garrett
,
P. T.
Griffiths
, and
Z.
Hussain
, “
Stability of the Blasius boundary layer over a heated plate in a temperature-dependent viscosity flow
,”
Phys. Rev. Fluids
3
,
113902
(
2018
).
21.
L. J.
Porter
, “
The effects of passive wall porosity on the linear stability of boundary layers
,” Ph.D. thesis (
University of Warwick
,
1998
).
22.
L. J.
Dempsey
and
A. G.
Walton
, “
Vortex/Tollmien–Schlichting wave interaction states in the asymptotic suction boundary layer
,”
Q. J. Mech. Appl. Math.
70
,
187
(
2017
).
23.
F. T.
Smith
, “
Non-parallel flow stability of the Blasius boundary layer
,”
Proc. R. Soc. London, Ser. A
366
,
91
(
1979
).
24.
W. H.
Reid
, “
The stability of parallel flows
,” in
Basic Developments in Fluid Dynamics
, 1st ed., edited by
M.
Holt
(
Academic Press
,
London
,
1965
), Vol.
1
, Chap. 3, pp.
249
307
.
25.
J. J.
Healey
, “
On the neutral curve of the flat-plate boundary layer: Comparison between experiment, Orr–Sommerfeld theory and asymptotic theory
,”
J. Fluid Mech.
288
,
59
(
1995
).
26.
M.
Cracco
,
C.
Davies
, and
T. N.
Phillips
, “
Linear stability of the flow of a second order fluid past a wedge
,”
Phys. Fluids
32
,
084102
(
2020
).
You do not currently have access to this content.