Noise radiated from flow past different configurations of the half-round mirror (HRM) mounted on a plate has been investigated using computational aeroacoustics (CAA). The stress-blended eddy simulation (SBES), together with the Ffowcs Williams–Hawkings (FW–H) acoustic analogy, was employed to predict near-field flow and far-field noise, respectively. The numerical methodology was verified and validated for the standard HRM case against several previously published numerical and experimental data sets, which provides good agreement. Further, (i) the choice of different type of grids for CAA and (ii) the applicability of methods such as the Kirchhoff integral and the FW–H using near field inputs computed from the SBES were assessed. As a next step, the effect of induced noise from the HRM for different (a) aspect ratios (AR) ranging from 1 to 2.5 and (b) inclination of the mirror toward the plate (θ) ranging from 0° to 32° was investigated. For all the investigated cases, the distribution of the radiated noise exhibits a dipole-like structure closer to the plate and a monopole-like structure away from the plate. By inclining the mirror closer to the mounting plate, the emitted noise is reduced both in the vertical and lateral directions of the wake, whereas an increase in the AR of the mirror increases the induced noise considerably. The findings from the current study can provide a deeper understanding for effectively mitigating the induced aerodynamic noise from side-view mirrors.

1.
B.
Li
,
C. C.
Ye
,
Z. H.
Wan
,
N. S.
Liu
,
D. J.
Sun
, and
X. Y.
Lu
, “
Noise control of subsonic flow past open cavities based on porous floors
,”
Phys. Fluids
32
,
125101
(
2020
).
2.
G.
Nasif
,
R.
Balachandar
, and
R. M.
Barron
, “
Influence of bed proximity on the three-dimensional characteristics of the wake of a sharp-edged bluff body
,”
Phys. Fluids
31
,
025116
(
2019
).
3.
Y.
Wang
,
D.
Thompson
, and
Z.
Hu
, “
Numerical investigations on the flow over cuboids with different aspect ratios and the emitted noise
,”
Phys. Fluids
32
,
025103
(
2020
).
4.
Y.
Wang
,
D.
Thompson
, and
Z.
Hu
, “
Effect of wall proximity on the flow over a cube and the implications for the noise emitted
,”
Phys. Fluids
31
,
077101
(
2019
).
5.
H. D.
Yao
and
L.
Davidson
, “
Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror
,”
Phys. Fluids
30
,
036104
(
2018
).
6.
H.
Yao
,
L.
Davidson
, and
L.
Eriksson
, “
Noise radiated by low-Reynolds number flows past a hemisphere at Ma = 0.3
,”
Phys. Fluids
29
,
076102
(
2017
).
7.
B.
Mahato
,
N.
Ganta
, and
Y. G.
Bhumkar
, “
Mitigation of aerodynamic sound for a laminar flow past a square cylinder using a pair of cowl plates
,”
Phys. Fluids
32
,
076108
(
2020
).
8.
A. M.
Shinneeb
,
R.
Balachandar
, and
K.
Zouhri
, “
Effect of gap flow on the shallow wake of a sharp-edged bluff body—Coherent structures
,”
Phys. Fluids
30
,
065107
(
2018
).
9.
H.
Yuan
,
Z.
Yang
,
Y.
Wang
,
Y.
Fan
, and
Y.
Fang
, “
Experimental analysis of hydrodynamic and acoustic pressure on automotive front side window
,”
J. Sound Vib.
476
,
115296
(
2020
).
10.
S.
Becker
,
K.
Nusser
, and
M.
Oswald
, “
Aero-vibro-acoustic wind noise-simulation based on the flow around a car
,” SAE Technical Paper 2016-01-1804,
2016
.
11.
M.
Helfer
, “
General aspects of vehicle aeroacoustics
,” in Proceedings of the
Lecture Series on Road Vehicle Aerodynamics
(
Von Karman Institute, Rhode-Genèse
,
Belgium
,
2005
).
12.
R.
Höld
,
A.
Brenneis
,
A.
Eberle
,
V.
Schwarz
, and
R.
Siegert
, “
Numerical simulation of aeroacoustic sound generated by generic bodies placed on a plate. I. Prediction of aeroacoustic sources
,” AIAA Paper No. 99-1896,
1999
.
13.
R.
Siegert
,
V.
Schwarz
, and
J.
Reichenberger
, “
Numerical simulation of aeroacoustic sound generated by generic bodies placed on a plate. II. Prediction of radiated sound pressure
,” AIAA Paper No. 99-1895,
1999
.
14.
T.
Rung
,
D.
Eschricht
,
J.
Yan
, and
F.
Thiele
, “
Sound radiation of the vortex flow past a generic side mirror
,” AIAA Paper No. 2002-2549,
2002
, pp.
1
10
.
15.
I.
Afgan
,
C.
Moulinec
, and
D.
Laurence
, “
Numerical simulation of generic side mirror of a car using large eddy simulation with polyhedral meshes
,”
Int. J. Numer. Methods Fluids
56
,
1107
(
2008
).
16.
J.
Ask
and
L.
Davidson
, “
A numerical investigation of the flow past a generic side mirror and its impact on sound generation
,”
J. Fluids Eng. Trans. ASME
131
,
061102
(
2009
).
17.
T.
Belamri
,
Y.
Egorov
, and
F.
Menter
, “
CFD simulation of the aeroacoustic noise generated by a generic side view car mirror
,” AIAA Paper No. 2007-3568,
2007
, pp.
1
12
.
18.
F.
Capizzano
,
L.
Alterio
,
S.
Russo
, and
C.
de Nicola
, “
A hybrid RANS-LES Cartesian method based on a skew-symmetric convective operator
,”
J. Comput. Phys.
390
,
359
(
2019
).
19.
M.
Caraeni
,
O.
Aybay
, and
S.
Holst
, “
Tandem cylinder and idealized side mirror far-field noise predictions using DES and an efficient implementation of FW-H equation
,” AIAA Paper No. 2011-2843,
2011
, pp.
5
8
.
20.
E.
DeVilliers
, “
The potential of large eddy simulation for the modeling of wall bounded flows Eugene de Villiers
,” Ph.D. thesis (Imperial College of Science, Technology and Medicine, London, UK,
2006
).
21.
Y.
Egorov
,
F. R.
Menter
,
R.
Lechner
, and
D.
Cokljat
, “
The scale-adaptive simulation method for unsteady turbulent flow predictions. II. Application to complex flows,” Flow
Turbul. Combust.
85
,
139
(
2010
).
22.
L.
Yu
,
S.
Diasinos
, and
B.
Thornber
, “
A fast transient solver for low-Mach number aerodynamics and aeroacoustics
,”
Comput. Fluids
214
,
104748
(
2021
).
23.
J.
Ask
and
L.
Davidson
, “
The sub-critical flow past a generic side mirror and its impact on sound generation and propagation
,” AIAA Paper No. 2006-2558,
2006
, pp.
1925
1944
.
24.
J.
Ask
and
L.
Davidson
, “
The near field acoustics of a generic side mirror based on an incompressible approach
,” Report No. 05/05, Division of Fluid Dynamics, Dept. of Applied Mechanics, Dynamics, Chalmers University of Technology, Göteborg, Sweden,
2005
.
25.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
26.
W.
Calus
,
H.
Thomas
, and
S.
Pierre
,
Large Eddy Simulation for Acoustics
(
Cambridge University Press
,
Cambridge, England
,
2007
).
27.
M. S.
Gritskevich
,
A. V.
Garbaruk
, and
F. R.
Menter
, “
Fine-tuning of DDES and IDDES formulations to the k-ω shear stress transport model
,”
Prog. Flight Phys.
5
,
23
(
2013
).
28.
X.
Chen
and
M.
Li
, “
Delayed detached eddy simulation of subcritical flow past generic side mirror
,”
J. Shanghai Jiaotong Univ.
24
,
107
(
2019
).
29.
A.
Tosh
,
M.
Caraeni
, and
D.
Caraeni
, “
A hybrid computational aeroacoustic method for low speed flows
,” AIAA Paper No. 2018-4096,
2018
.
30.
A.
Schell
and
M.
Eiselt
, “
Numerical investigation of tonal noise at automotive side mirrors due to aeroacoustic feedback
,” SAE Technical Paper No. 2020-01-1514,
2020
.
31.
A. H.
Dawi
and
R. A. D.
Akkermans
, “
Spurious noise in direct noise computation with a finite volume method for automotive applications
,”
Int. J. Heat Fluid Flow
72
,
243
(
2018
).
32.
M. A.
Alhawwary
and
Z. J.
Wang
, “
Implementation of a FWH approach in a high-order les tool for aeroacoustic noise predictions
,” AIAA Paper No. 2020-1724,
2020
.
33.
Y.
Khalighi
,
A.
Mani
,
F.
Ham
, and
P.
Moin
, “
Prediction of sound generated by complex flows at low mach numbers
,”
AIAA J.
48
,
306
(
2010
).
34.
B.
Lokhande
,
S.
Sovani
, and
J.
Xu
, “
Computational aeroacoustic analysis of a generic side view mirror
,” SAE Technical Paper 2003-01-169
8
,
2003
.
35.
H.
Choi
and
P.
Moin
, “
Effects of the computational time step on numerical solutions of turbulent flow
,”
J. Comput. Phys.
113
,
1
(
1994
).
36.
F.
Menter
,
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
, Notes on Numerical Fluid Mechanics and Multidisciplinary Design Book Series (
Springer
,
2018
), pp.
27
37
.
37.
K. K.
Chode
,
H.
Viswanathan
, and
K.
Chow
, “
Numerical investigation on the salient features of flow over standard notchback configurations using scale resolving simulations
,”
Comput. Fluids
210
,
104666
(
2020
).
38.
J.
Ye
,
M.
Xu
,
P.
Xing
,
Y.
Cheng
,
D.
Meng
,
Y.
Tang
, and
M.
Zhu
, “
Investigation of aerodynamic noise reduction of exterior side view mirror based on bionic shark fin structure
,”
Appl. Acoust.
182
,
108188
(
2021
).
39.
M.
Hartmann
,
J.
Ocker
,
T.
Lemke
,
A.
Mutzke
,
V.
Schwarz
,
H.
Tokuno
,
R.
Toppinga
,
P.
Unterlechner
, and
G.
Wickern
, “
Wind noise caused by the a-pillar and the side mirror flow of a generic vehicle model
,” AIAA Paper No. 2012–2205,
2012
.
40.
A. H.
Dawi
and
R. A. D.
Akkermans
, “
Direct noise computation of a generic vehicle model using a finite volume method
,”
Comput. Fluids
191
,
104243
(
2019
).
41.
S.
Bhattacharya
and
A.
Ahmed
, “
Effect of aspect ratio on the flow over a wall-mounted hemispherical turret
,”
Int. J. Heat Fluid Flow
84
,
108600
(
2020
).
42.
D.
Sumner
,
N.
Rostamy
,
D. J.
Bergstrom
, and
J. D.
Bugg
, “
Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism
,”
Int. J. Heat Fluid Flow
65
,
1
(
2017
).
43.
W.
Devenport
,
N.
Alexander
,
S.
Glegg
, and
M.
Wang
, “
The sound of flow over rigid walls
,”
Annu. Rev. Fluid Mech.
50
,
435
(
2018
).
44.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow Turbul. Combust.
62
,
183
(
1999
).
45.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
(
1994
).
46.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. London, Ser. A
264
,
321
(
1969
).
47.
R.
Ewert
and
W.
Schröder
, “
Acoustic perturbation equations based on flow decomposition via source filtering
,”
J. Comput. Phys.
188
,
365
(
2003
).
48.
K. K.
Chode
,
H.
Viswanathan
, and
K.
Chow
, “
Computational aeroacoustics of a generic side view mirror using stress blended eddy simulation
,” arXiv:2007.12783 (
2020
).
49.
T.
Grahs
and
C.
Othmer
, “
Evaluation of aerodynamic noise generation: Parameter study of generic side mirror evaluating the aeroacoustic source strength
,” in
Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD)
(TU Delft, The Netherlands,
2006
), pp.
1
14
.
50.
M.
Su
and
J.
Der Yu
, “
A parallel large eddy simulation with unstructured meshes applied to turbulent flow around car side mirror
,”
Comput. Fluids
55
,
24
(
2012
).
51.
F. Q.
Hu
,
M. Y.
Hussaini
, and
J. L.
Manthey
, “
Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics
,”
J. Comput. Phys.
124
,
177
(
1996
).
52.
R. B.
Langtry
,
E. A.
Gren
,
J. V.
Larssen
, and
P. R.
Spalart
, “
Evaluation of structured and unstructured grids for detached eddy simulation of flap edge noise
,” AIAA Paper No. 2009-3102,
2009
, pp.
11
13
.
53.
ANSYS
,
5 Best Practices for Gas Turbine Combustion Meshing using ANSYS Fluent
(
ANSYS
,
2020
), p.
1
.
54.
H.
Yao
and
L.
Davidson
, “
Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body
,”
J. Acoust. Soc. Am.
145
,
3163
(
2019
).
55.
J.
Ask
and
L.
Davidson
, “
The sub-critical flow past a generic side mirror and its impact on sound generation and propagation
,”
A
IAA Paper No. 2006-2558,
2006
, p.
1925
.
56.
L.
Zhong
,
Q.
Li
,
Y.
Wang
, and
Z.
Yang
, “
Aerodynamic noise prediction of passenger vehicle with hybrid detached eddy simulation/acoustic perturbation equation method
,”
Proc. Inst. Mech. Eng., Part D
233
,
2390
(
2019
).
57.
H. D.
Yao
,
L.
Davidson
,
L. E.
Eriksson
,
O.
Grundestam
,
S. H.
Peng
, and
P. E.
Eliasson
, “
Surface integral analogy approaches to computing noise generated by a 3D high-lift wing configuration
,” AIAA 2012-0396,
2012
.
You do not currently have access to this content.