This study parametrically assessed the stability of the phase-field lattice Boltzmann model (PFLBM) before applying it to analyze the effect of annular piping geometry on the flow of Taylor bubbles. The impacts of both eccentricity and pipe diameter ratio were examined, providing an insight into the behavior of these bubbles as well as the applicability and shortcomings in current prediction methodologies. A recently developed PFLBM was implemented into the open-source simulation framework, waLBerla, for this analysis. The stability properties of the code were investigated in detail by assessing various lattice discretizations and relaxation kernels applied to the Rayleigh–Taylor benchmark problem and a Rayleigh–Taylor instability in a tubular geometry, with gravitational Reynolds numbers of up to 30 000 and 10 000, respectively. This paper makes three contributions relating to the stability and usage of the PFLBM as well as the flow of Taylor bubbles in annular pipes. First, the work numerically explored the stability properties of the velocity-based, PFLBM and concluded the impact of various collision models and lattice discretizations on simulation results. Second, it provided a flexible open-source code that the interested researcher can use interactively for practical flow problems as well as the analysis of numerical properties of various lattice Boltzmann algorithms. Finally, it quantified the effect of pipe eccentricity and diameter ratio on the propagation of a Taylor bubble inside a water-filled annular pipe, concluding that a previously defined closure model captured the diameter ratio for the cases examined. To extend this work, future studies aim to analytically investigate the stability properties parametrically observed in this study and apply the findings to simulate the interaction of multiple Taylor bubbles.

1.
B.
Wu
,
M.
Firouzi
,
T.
Mitchell
,
T. E.
Rufford
,
C.
Leonardi
, and
B.
Towler
, “
A critical review of flow maps for gas-liquid flows in vertical pipes and annuli
,”
Chem. Eng. J.
326
,
350
377
(
2017
).
2.
E. M. A.
Frederix
,
E. M. J.
Komen
,
I.
Tiselj
, and
B.
Mikuz
, “
LES of turbulent co-current Taylor bubble flow
,”
Flow, Turbul. Combust.
105
,
471
495
(
2020
).
3.
A.
Tomiyama
,
Y.
Nakahara
,
Y.
Adachi
, and
S.
Hosokawa
, “
Shapes and rising velocities of single bubbles rising through an inner subchannel
,”
J. Nucl. Sci. Technol.
40
,
136
142
(
2003
).
4.
E.
Gutiérrez
,
N.
Balcázar
,
E.
Bartrons
, and
J.
Rigola
, “
Numerical study of Taylor bubbles rising in a stagnant liquid using a level-set/moving-mesh method
,”
Chem. Eng. Sci.
164
,
158
177
(
2017
).
5.
G.
Das
,
P.
Das
,
N.
Purohit
, and
A.
Mitra
, “
Rise velocity of a Taylor bubble through concentric annulus
,”
Chem. Eng. Sci.
53
(
5
),
977
993
(
1998
).
6.
F.
Viana
,
P.
Pardo
,
R.
Yanex
,
J. L.
Trallero
, and
D. D.
Joseph
, “
Universal correlation for the rise velocity of long gas bubbles in round pipes
,”
J. Fluid Mech.
494
,
379
398
(
2003
).
7.
V.
Hernandez-Perez
,
L.
Abdulkareem
, and
B.
Azzopardi
, “
Effects of physical properties on the behaviour of Taylor bubbles
,”
Comput. Methods Multiphase Flow
63
,
355
366
(
2009
).
8.
J.
Moreiras
,
E.
Pereyra
,
C.
Sarica
, and
C. F.
Torres
, “
Unified drift velocity closure relationship for large bubbles rising in stagnant viscous fluids in pipes
,”
J. Petroleum Sci. Eng.
124
,
359
366
(
2014
).
9.
E.
Lizarraga-Garcia
,
J.
Buongiorno
,
E.
Al-Safran
, and
D.
Lakehal
, “
A broadly-applicable unified closure relation for Taylor bubble rise velocity in pipes with stagnant liquid
,”
Int. J. Multiphase Flow
89
,
345
358
(
2017
).
10.
E. Z.
Massoud
,
Q.
Xiao
,
H. A.
El-Gamal
, and
M. A.
Teamah
, “
Numerical study of an individual Taylor bubble rising through stagnant liquids under laminar flow regime
,”
Ocean Eng.
162
,
117
137
(
2018
).
11.
J.
Bugg
and
G.
Saad
, “
The velocity field around a Taylor bubble rising in a stagnant viscous fluid: Numerical and experimental results
,”
Int. J. Multiphase Flow
28
(
5
),
791
803
(
2002
).
12.
T.
Taha
and
Z.
Cui
, “
CFD modelling of slug flow in vertical tubes
,”
Chem. Eng. Sci.
61
(
2
),
676
687
(
2006
).
13.
M. C. F.
Silva
,
J. B. L. M.
Campos
, and
J. D. P.
Araújo
, “
Mass transfer from a soluble Taylor bubble to the surrounding flowing liquid in a vertical macro tube - A numerical approach
,”
Chem. Eng. Res. Des.
144
,
47
62
(
2019
).
14.
T.
Mitchell
,
C.
Leonardi
, and
A.
Fakhari
, “
Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios
,”
Int. J. Multiphase Flow
107
,
1
15
(
2018
).
15.
T.
Mitchell
and
C.
Leonardi
, “
Development of closure relations for the motion of Taylor bubbles in vertical and inclined annular pipes using high-fidelity numerical modeling
,”
Phys. Fluids
32
(
6
),
063306
(
2020
).
16.
T.
Mitchell
and
C.
Leonardi
, “
On the rise characteristics of Taylor bubbles in annular piping
,”
Int. J. Multiphase Flow
130
,
103376
(
2020
).
17.
M.
Geier
,
A.
Fakhari
, and
T.
Lee
, “
Conservative phase-field lattice Boltzmann model for interface tracking equation
,”
Phys. Rev. E
91
,
063309
(
2015
).
18.
A.
Fakhari
,
T.
Mitchell
,
C.
Leonardi
, and
D.
Bolster
, “
Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios
,”
Phys. Rev. E
96
(
5
),
053301
(
2017
).
19.
F.
Ren
,
B.
Song
,
M. C.
Sukop
, and
H.
Hu
, “
Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation
,”
Phys. Rev. E
94
(
2
),
023311
(
2016
).
20.
E.
Dinesh Kumar
,
S. A.
Sannasiraj
, and
V.
Sundar
, “
Phase field lattice Boltzmann model for air-water two phase flows
,”
Phys. Fluids
31
,
072103
(
2019
).
21.
G.
Gruszczyński
,
T.
Mitchell
,
C.
Leonardi
,
L.
Łaniewski-Wołłk
, and
T.
Barber
, “
A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast
,”
Comput. Math. Appl.
79
(
4
),
1049
1071
(
2020
).
22.
L.
Łaniewski-Wołłk
and
J.
Rokicki
, “
Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture
,”
Comput. Math. Appl.
71
(
3
),
833
848
(
2016
).
23.
S. M.
Allen
and
J. W.
Cahn
, “
Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys
,”
Acta Metall.
24
(
5
),
425
437
(
1976
).
24.
A.
Fakhari
,
M.
Geier
, and
T.
Lee
, “
A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows
,”
J. Comput. Phys.
315
,
434
457
(
2016
).
25.
A.
Fakhari
and
D.
Bolster
, “
Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios
,”
J. Comput. Phys.
334
,
620
(
2017
).
26.
A.
Fakhari
,
Y.
Li
,
D.
Bolster
, and
K. T.
Christensen
, “
A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale
,”
Adv. Water Resources
114
,
119
(
2018
).
27.
M.
Bauer
,
J.
Hötzer
,
D.
Ernst
,
J.
Hammer
,
M.
Seiz
,
H.
Hierl
,
J.
Hönig
,
H.
Köstler
,
G.
Wellein
,
B.
Nestler
, and
U.
Rüde
, “
Code generation for massively parallel phase-field simulations
,” in
SC '19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Association for Computing Machinery
(
Association for Computing Machinery
,
2019
), pp.
1
32
.
28.
M.
Bauer
,
S.
Eibl
,
C.
Godenschwager
,
N.
Kohl
,
M.
Kuron
,
C.
Rettinger
,
F.
Schornbaum
,
C.
Schwarzmeier
,
D.
Thönnes
,
H.
Köstler
, and
U.
Rüde
, “
walberla: A block-structured high-performance framework for multiphysics simulations
,”
Comput. Math. Appl.
81
,
478
(
2021
).
29.
M.
Holzer
,
B. M. H.
Köstler
, and
U.
Rüde
, “
Highly efficient lattice Boltzmann multiphase simulations of immiscible fluids at high-density ratios on CPUs and GPUs through code generation
,”
Int. J. High Performance Comput. Appl.
35
,
413
(
2021
).
30.
M.
Bauer
,
H.
Köstler
, and
U.
Rüde
, “
lbmpy: Automatic code generation for efficient parallel lattice Boltzmann methods
,”
J. Comput. Sci.
49
,
101269
(
2021
).
31.
M.
Geier
,
A.
Greiner
, and
J. G.
Korvink
, “
Cascaded digital lattice Boltzmann automata for high Reynolds number flow
,”
Phys. Rev. E
73
,
066705
(
2006
).
32.
P. J.
Dellar
, “
Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations
,”
Phys. Rev. E
65
,
036309
(
2002
).
33.
A.
Fakhari
,
D.
Bolster
, and
L.-S.
Luo
, “
A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades
,”
J. Comput. Phys.
341
,
22
43
(
2017
).
34.
U.
Rüde
and
M.
Bauer
, “
An improved lattice Boltzmann D3Q19 method based on an alternative equilibrium discretization
,” arXiv:1803.04937 (
2018
).
35.
M.
Geier
,
M.
Schönherr
,
A.
Pasquali
, and
M.
Krafczyk
, “
The cumulant lattice Boltzmann equation in three dimensions: Theory and validation
,”
Comput. Math. Appl.
70
,
507
(
2015
).
36.
Y. P.
Sitompul
and
T.
Aoki
, “
A filtered cumulant lattice Boltzmann method for violent two-phase flows
,”
J. Comput. Phys.
390
,
93
120
(
2019
).
37.
Y. P.
Sitompul
,
T.
Aoki
, and
T.
Takaki
, “
Simulation of turbulent bubbly pipe flow with high density ratio and high Reynolds number by using the lattice Boltzmann method and a multi-phase field model
,”
Int. J. Multiphase Flow
134
,
103505
(
2021
).
38.
T. R.
Mitchell
,
M.
Majidi
,
M. H.
Rahimian
, and
C. R.
Leonardi
, “
Computational modeling of three-dimensional thermocapillary flow of recalcitrant bubbles using a coupled lattice Boltzmann-finite difference method
,”
Phys. Fluids
33
(
3
),
032108
(
2021
).
39.
X.
He
,
R.
Zhang
,
S.
Chen
, and
G. D.
Doolen
, “
On the three-dimensional Rayleigh–Taylor instability
,”
Phys. Fluids
11
(
5
),
1143
1152
(
1999
).
40.
Q.
Li
,
K. H.
Luo
,
Y. J.
Gao
, and
Y. L.
He
, “
Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows
,”
Phys. Rev. E
85
,
026704
(
2012
).
41.
Y. Q.
Zu
and
S.
He
, “
Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts
,”
Phys. Rev. E
87
,
043301
(
2013
).
42.
J. Y.
Shao
and
C.
Shu
, “
A hybrid phase field multiple relaxation time lattice Boltzmann method for the incompressible multiphase flow with large density contrast
,”
Int. J. Numer. Methods Fluids
77
,
526
543
(
2015
).
43.
H.
Amirshaghaghi
,
M. H.
Rahimian
,
H.
Safari
, and
M.
Krafczyk
, “
Large eddy simulation of liquid sheet breakup using a two-phase lattice Boltzmann method
,”
Comput. Fluids
160
,
93
107
(
2018
).
44.
S. A.
Hosseini
,
H.
Safari
, and
D.
Thevenin
, “
Lattice Boltzmann solver for multiphase flows: Application to high Weber and Reynolds numbers
,”
Entropy
23
(
2
),
166
(
2021
).
45.
J. W.
Jacobs
,
A.
Bunster
,
I.
Catton
, and
M. S.
Plesset
, “
Experimental Rayleigh-Taylor instability in a circular tube
,”
J. Fluids Eng.
107
,
460
(
1985
).
46.
P. G.
Drazin
and
W.
Reid
, “
Hydrodynamic stability
,”
ZAMM
62
,
138
(
1982
).
47.
H.
Yu
and
D.
Livescu
, “
Rayleigh–Taylor instability in cylindrical geometry with compressible fluids
,”
Phys. Fluids
20
,
104103
(
2008
).
48.
H.
Sweeney
,
R.
Kerswell
, and
T.
Mullin
, “
Rayleigh-Taylor instability in a finite cylinder: Linear stability analysis and long-time fingering solutions
,”
J. Fluid Mech.
734
,
338
(
2013
).
49.
W.
Li
,
D.
Liu
,
M.
Desbrun
,
J.
Huang
, and
X.
Liu
, “
Kinetic-based multiphase flow simulation
,”
IEEE Trans. Visualization Comput. Graph
27
(
7
),
3318
3334
(
2021
).
50.
A.
Savitzky
and
M. J. E.
Golay
, “
Smoothing and differentiation of data by simplified least squares procedures
,”
Anal. Chem.
36
(
8
),
1627
1639
(
1964
).
51.
You do not currently have access to this content.