We demonstrate the first application of dynamic mode decomposition (DMD) to bubble flow with resolved dynamic liquid/gas boundaries. Specifically, we have applied DMD to the output of numerical simulations for a system where chains of bubbles ascend through a rectangular liquid metal vessel. Flow patterns have been investigated in the vessel and bubble reference frames. We show how gas flow rate and applied magnetic affect bubble wake flow and larger-scale flow structures within the liquid metal vessel by examining the velocity field mode statistics over trajectory time and total flow time as well as the computed mode velocity fields. The results of this proof-of-concept study indicate that DMD can yield unique insights into various momentum transfer and bubble interaction mechanisms, and that mode analysis can be used to explain the observed flow patterns. In addition, we showcase our own implementation of DMD that combines resilience to data noise, memory efficiency and special pre-processing for input data.

1.
E.
Baake
,
T.
Fehling
,
D.
Musaeva
, and
T.
Steinberg
, “
Neutron radiography for visualization of liquid metal processes: Bubbly flow for CO2 free production of hydrogen and solidification processes in EM field
,”
IOP Conf. Ser.
228
,
012026
(
2017
).
2.
Z.
Liu
,
L.
Li
,
F.
Qi
,
B.
Li
,
M. F.
Jiang
, and
F.
Tsukihashi
, “
Population balance modeling of polydispersed bubbly flow in continuous-casting using multiple-size-group approach
,”
Metall. Mater. Trans. B
46
,
406
(
2015
).
3.
D.
Schurmann
,
I.
Glavinic
,
B.
Willers
, and
K.
Timmel
, “
Impact of the electromagnetic brake position on the flow structure in a slab continuous casting mold: An experimental parameter study
,”
Metall. Mater. Trans. B
51
,
61
(
2020
).
4.
B.
Thomas
,
R.
Singh
,
S.
Vanka
,
K.
Timmel
,
S.
Eckert
, and
G.
Gerbeth
, “
Effect of single-ruler electromagnetic braking (EMBr) location on transient flow in continuous casting
,”
J. Manuf. Sci. Prod.
15
,
93
(
2015
).
5.
K.
Timmel
,
S.
Eckert
,
G.
Gerbeth
,
F.
Stefani
, and
T.
Wondrak
, “
Experimental modeling of the continuous casting process of steel using low melting point metal alloys—the LIMMCAST program
,”
ISIJ Int.
50
,
1134
(
2010
).
6.
K.
Timmel
,
N.
Shevchenko
,
M.
Röder
,
M.
Anderhuber
,
P.
Gardin
,
S.
Eckert
, and
G.
Gerbeth
, “
Visualization of liquid metal two-phase flows in a physical model of the continuous casting process of steel
,”
Metall. Mater. Trans. B
46
,
700
(
2015
).
7.
T.
Wondrak
,
S.
Eckert
,
G.
Gerbeth
,
K.
Klotsche
,
F.
Stefani
,
K.
Timmel
,
A.
Peyton
,
N.
Terzija
, and
W.
Yin
, “
Combined electromagnetic tomography for determining two-phase flow characteristics in the submerged entry nozzle and in the mold of a continuous casting model
,”
Metall. Mater. Trans. B
42
,
1201
(
2011
).
8.
M.
Birjukovs
,
V.
Dzelme
,
A.
Jakovics
,
K.
Thomsen
, and
P.
Trtik
, “
Phase boundary dynamics of bubble flow in a thick liquid metal layer under an applied magnetic field
,”
Phys. Rev. Fluids
5
,
061601
(
2020
).
9.
C.
Zhang
, “
Liquid metal flows driven by gas bubbles in a static magnetic field
,” Ph.D. thesis (
Technische Universität Dresden
, Dresden,
2009
).
10.
E.
Strumpf
, “
Experimental study on rise velocities of single bubbles in liquid metal under the influence of strong horizontal magnetic fields in a flat vessel
,”
Int. J. Multiphase Flow
97
,
168
(
2017
).
11.
C.
Zhang
,
S.
Eckert
, and
G.
Gerbeth
, “
Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field
,”
Int. J. Multiphase Flow
31
,
824
(
2005
).
12.
Z.
Wang
,
S.
Wang
,
X.
Meng
, and
M.
Ni
, “
UDV measurements of single bubble rising in a liquid metal Galinstan with a transverse magnetic field
,”
Int. J. Multiphase Flow
94
,
201
(
2017
).
13.
W. l
Shew
,
S.
Poncet
, and
J.-F.
Pinton
, “
Force measurements on rising bubbles
,”
J. Fluid Mech.
569
,
51
60
(
2006
).
14.
T.
Richter
,
O.
Keplinger
,
N.
Shevchenko
,
T.
Wondrak
,
K.
Eckert
,
S.
Eckert
, and
S.
Odenbach
, “
Single bubble rise in GaInSn in a horizontal magnetic field
,”
Int. J. Multiphase Flow
104
,
32
(
2018
).
15.
S.
Schwarz
,
An Immersed Boundary Method for Particles and Bubbles in Magnetohydrodynamic Flows
(
Institute of Fluid Mechanics
,
TU Dresden
,
2014
).
16.
S.
Schwarz
and
J.
Fröhlich
, “
Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field
,”
Int. J. Multiphase Flow
62
,
134
(
2014
).
17.
K.
Jin
,
P.
Kumar
,
S.
Vanka
, and
B.
Thomas
, “
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
,”
Phys. Fluids
28
,
093301
(
2016
).
18.
J.
Zhang
and
M.-J.
Ni
, “
Direct simulation of single bubble motion under vertical magnetic field: Paths and wakes
,”
Phys. Fluids
26
,
102102
(
2014
).
19.
J.
Zhang
,
M.-J.
Ni
, and
R.
Moreau
, “
Rising motion of a single bubble through a liquid metal in the presence of a horizontal magnetic field
,”
Phys. Fluids
28
,
032101
(
2016
).
20.
D.
Gaudlitz
and
N.
Adams
, “
Numerical investigation of rising bubble wake and shape variations
,”
Phys. Fluids
21
,
122102
(
2009
).
21.
X.
Wang
,
B.
Klaasen
,
J.
Degrève
,
A.
Mahulkar
,
G.
Heynderickx
,
M.-F.
Reyniers
,
B.
Blanpain
, and
F.
Verhaeghe
, “
Volume-of-fluid simulations of bubble dynamics in a vertical Hele–Shaw cell
,”
Phys. Fluids
28
,
053304
(
2016
).
22.
V.
Roig
,
M.
Roudet
,
F.
Risso
, and
A.-M.
Billet
, “
Dynamics of a high-Reynolds-number bubble rising within a thin gap
,”
J. Fluid Mech.
707
,
444
(
2012
).
23.
G.
Mougin
and
J.
Magnaudet
, “
Path instability of a rising bubble
,”
Phys. Rev. Lett.
88
,
014502
(
2001
).
24.
M.
Tripathi
,
K.
Sahu
, and
R.
Govindarajan
, “
Dynamics of an initially spherical bubble rising in quiescent liquid
,”
Nat. Commun.
6
,
6268
(
2015
).
25.
J.
Zhang
and
M.-J.
Ni
, “
What happens to the vortex structures when the rising bubble transits from zigzag to spiral?
,”
J. Fluid Mech.
828
,
353
(
2017
).
26.
J.
Zhang
,
K.
Sahu
, and
M.-J.
Ni
, “
Transition of bubble motion from spiralling to zigzagging: A wake-controlled mechanism with a transverse magnetic field
,”
Int. J. Multiphase Flow
136
,
103551
(
2021
).
27.
J.
Will
,
V.
Mathai
,
S.
Huisman
,
D.
Lohse
,
C.
Sun
, and
D.
Krug
, “
Kinematics and dynamics of freely rising spheroids at high Reynolds numbers
,”
J. Fluid Mech.
912
,
A16
(
2021
).
28.
O.
Keplinger
,
N.
Shevchenko
, and
S.
Eckert
, “
Experimental investigation of bubble breakup in bubble chains rising in a liquid metal
,”
Int. J. Multiphase Flow
116
,
39
(
2019
).
29.
O.
Keplinger
,
N.
Shevchenko
, and
S.
Eckert
, “
Visualization of bubble coalescence in bubble chains rising in a liquid metal
,”
Int. J. Multiphase Flow
105
,
159
(
2018
).
30.
T.
Ziegenhein
and
D.
Lucas
, “
Observations on bubble shapes in bubble columns under different flow conditions
,”
Exp. Therm. Fluid Sci.
85
,
248
(
2017
).
31.
Z.
Liu
and
B.
Li
, “
Large-eddy simulation of transient horizontal gas–liquid flow in continuous casting using dynamic subgrid-scale model
,”
Metall. Mater. Trans. B
48
,
1833
(
2017
).
32.
W.
Yang
,
Z.
Luo
,
N.
Zhao
, and
Z.
Zou
, “
Numerical analysis of effect of initial bubble size on captured bubble distribution in steel continuous casting using Euler–Lagrange approach considering bubble coalescence and breakup
,”
Metals
10
,
1160
(
2020
).
33.
W.
Yang
,
Z.
Luo
,
Y.
Gu
,
Z.
Liu
, and
Z.
Zou
, “
Numerical analysis of effect of operation conditions on bubble distribution in steel continuous casting mold with advanced bubble break-up and coalescence models
,”
ISIJ Int.
60
,
2234
(
2020
).
34.
M.
Taborda
,
M.
Sommerfeld
, and
M.
Muniz
, “
LES-Euler/Lagrange modelling of bubble columns considering mass transfer, chemical reactions and effects of bubble dynamics
,”
Chem. Eng. Sci.
229
,
116121
(
2021
).
35.
M.
Akashi
,
O.
Keplinger
,
N.
Shevchenko
,
S.
Anders
, and
M.
Reuter
, “
X-ray radioscopic visualization of bubbly flows injected through a top submerged lance into a liquid metal
,”
Metall. Mater. Trans. B
51
,
124
(
2020
).
36.
Y.
Saito
,
K.
Mishima
,
Y.
Tobita
,
T.
Suzuki
, and
M.
Matsubayashi
, “
Measurements of liquid-metal two-phase flow by using neutron radiography and electrical conductivity probe
,”
Exp. Therm. Fluid Sci.
29
(
3
),
323
330
(
2005
).
37.
Y.
Saito
,
K.
Mishima
,
Y.
Tobita
,
T.
Suzuki
,
M.
Matsubayashi
,
I. C.
Lim
, and
J. E.
Cha
, “
Application of high frame-rate neutron radiography to liquid-metal two-phase flow research
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
542
,
168
(
2005
); in Proceedings of the Fifth International Topical Meeting on Neutron Radiography (2005).
38.
T.
Lappan
,
M.
Sarma
,
S.
Heitkam
,
P.
Trtik
,
D.
Mannes
,
K.
Eckert
, and
S.
Eckert
, “
Neutron radiography of particle-laden liquid metal flow driven by an electromagnetic induction pump
,”
Magnetohydrodynamics
56
,
167
(
2020
).
39.
M.
Sarma
,
M.
Ščepanskis
,
A.
Jakovics
,
K.
Thomsen
,
R.
Nikoluškins
,
P.
Vontobel
,
T.
Beinerts
,
A.
Bojarevics
, and
E.
Platacis
, “
Neutron radiography visualization of solid particles in stirring liquid metal
,”
Phys. Procedia
69
,
457
(
2015
).
40.
M.
Ščepanskis
,
M.
Sarma
,
P.
Vontobel
,
P.
Trtik
,
K.
Thomsen
,
A.
Jakovics
, and
T.
Beinerts
, “
Assessment of electromagnetic stirrer agitated liquid metal flows by dynamic neutron radiography
,”
Metall. Mater. Trans. B
48
,
1045
(
2017
).
41.
V.
Dzelme
,
A.
Jakovics
,
J.
Vencels
,
D.
Köppen
, and
E.
Baake
, “
Numerical and experimental study of liquid metal stirring by rotating permanent magnets
,”
IOP Conf. Ser.
424
,
012047
(
2018
).
42.
M.
Birjukovs
,
V.
Dzelme
,
A.
Jakovics
,
K.
Thomsen
, and
P.
Trtik
, “
Argon bubble flow in liquid gallium in external magnetic field
,”
Int. J. Appl. Electromagn. Mech.
63
,
S51
(
2020
).
43.
L.
Liu
,
O.
Keplinger
,
T.
Ziegenhein
,
N.
Shevchenko
,
S.
Eckert
,
H.
Yan
, and
D.
Lucas
, “
Euler–Euler modeling and X-ray measurement of oscillating bubble chain in liquid metals
,”
Int. J. Multiphase Flow
110
,
218
(
2019
).
44.
B.
Krull
,
E.
Strumpf
,
O.
Keplinger
,
N.
Shevchenko
,
J.
Fröhlich
,
S.
Eckert
, and
G.
Gerbeth
, “
Combined experimental and numerical analysis of a bubbly liquid metal flow
,”
IOP Conf. Ser.
228
,
012006
(
2017
).
45.
O.
Keplinger
,
N.
Shevchenko
, and
S.
Eckert
, “
Validation of X-ray radiography for characterization of gas bubbles in liquid metals
,”
IOP Conf. Ser.
228
,
012009
(
2017
).
46.
Y.
Liu
,
M.
Ersson
,
H.
Liu
,
P.
Jönsson
, and
Y.
Gan
, “
A review of physical and numerical approaches for the study of gas stirring in ladle metallurgy
,”
Metall. Mater. Trans. B
50
,
555
(
2019
).
47.
Q.
Cao
and
L.
Nastac
, “
Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle
,”
Ironmaking Steelmaking
45
,
984
(
2018
).
48.
E.
Ramasetti
,
V.-V.
Visuri
,
P.
Sulasalmi
,
T.
Palovaara
,
A.
Gupta
, and
T.
Fabritius
, “
Physical and CFD modeling of the effect of top layer properties on the formation of open‐eye in gas‐stirred ladles with single and dual‐plugs
,”
Steel Res. Int.
90
,
1900088
(
2019
).
49.
W.
Lou
and
M.
Zhu
, “
Numerical simulation of desulfurization behavior in gas-stirred systems based on computation fluid dynamics–simultaneous reaction model (CFD–SRM) coupled model
,”
Metall. Mater. Trans. B
45
,
1706
(
2014
).
50.
H.
Kusuno
and
T.
Sanada
, “
Wake-induced lateral migration of approaching bubbles
,”
Int. J. Multiphase Flow
139
,
103639
(
2021
).
51.
J.
Zhang
,
L.
Chen
, and
M.-J.
Ni
, “
Vortex interactions between a pair of bubbles rising side by side in ordinary viscous liquids
,”
Phys. Rev. Fluids
4
,
043604
(
2019
).
52.
J.
Zhang
,
M.-J.
Ni
, and
J.
Magnaudet
, “
Three-dimensional dynamics of a pair of deformable bubbles rising initially in line. Part 1. Moderately inertial regimes
,”
J. Fluid Mech.
920
,
A16
(
2020
).
53.
A.
Filella
,
P.
Ern
, and
R.
Véronique
, “
Interaction of two oscillating bubbles rising in a thin-gap cell: Vertical entrainment and interaction with vortices
,”
J. Fluid Mech.
888
,
A13
(
2020
).
54.
G.
Haller
, “
An objective definition of a vortex
,”
J. Fluid Mech.
525
,
1
26
(
2005
).
55.
V.
Holmen
, “
Methods for vortex identification
,” Ph.D. thesis (
Lund University
, Sweden,
2012
).
56.
J.
Tu
,
C.
Rowley
,
D.
Luchtenburg
,
S.
Brunton
, and
J.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
(
2013
).
57.
P.
Schmid
and
J.
Sesterhenn
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
(
2008
),
5
(
2010
).
58.
C.
Rowley
,
I.
Mezic
,
S.
Bagheri
,
P.
Schlatter
, and
D.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
(
2009
).
59.
A.
Seena
and
H. J.
Sung
, “
Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
,”
Int. J. Heat Fluid Flow
32
,
1098
(
2011
).
60.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
61.
J.
Rojsel
, “
Koopman mode analysis of the side-by-side cylinder wake
,” Ph.D. thesis [
KTH, School of Engineering Sciences (SCI)
,
2017
].
62.
J.
Manning
and
R.
Baldick
, “
Forecasting short-term dynamics of fair-weather cumuli using dynamic mode decomposition
,” arXiv:1907.12980 (
2019
).
63.
J.
Grosek
and
J. N.
Kutz
, “
Dynamic mode decomposition for real-time background/foreground separation in video
,” arXiv:1404.7592 (
2014
).
64.
I.
Ul Haq
,
K.
Fujii
, and
Y.
Kawahara
, “
Dynamic mode decomposition via dictionary learning for foreground modeling in videos
,”
Comput. Vision Image Understanding
199
,
103022
(
2020
).
65.
B. W.
Brunton
,
L. A.
Johnson
,
J. G.
Ojemann
, and
J. N.
Kutz
, “
Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
,” arXiv:1409.5496 (
2020
).
66.
Y.
Shiraishi
,
Y.
Kawahara
,
O.
Yamashita
,
R.
Fukuma
,
S.
Yamamoto
,
Y.
Saitoh
,
H.
Kishima
, and
T.
Yanagisawa
, “
Neural decoding of electrocorticographic signals using dynamic mode decomposition
,”
J. Neural Eng.
17
,
036009
(
2020
).
67.
A. B.
Albidah
,
W.
Brevis
,
V.
Fedun
,
I.
Ballai
,
D. B.
Jess
,
M.
Stangalini
,
J.
Higham
, and
G.
Verth
, “
Proper orthogonal and dynamic mode decomposition of sunspot data
,”
Philos. Trans. R. Soc. A
379
,
20200181
(
2020
).
68.
V. C.
Loukopoulos
,
G. C.
Bourantas
, and
K.
Miller
, “
Study of the thermo-magneto-hydrodynamic flow of micropolar-nanofluid in square enclosure using dynamic mode decomposition and proper orthogonal decomposition
,”
Eur. J. Mech. B/Fluids
84
,
272
(
2020
).
69.
R.
Taylor
,
J. N.
Kutz
,
K.
Morgan
, and
B. A.
Nelson
, “
Dynamic mode decomposition for plasma diagnostics and validation
,”
Rev. Sci. Instrum.
89
,
053501
(
2018
).
70.
A. A.
Kaptanoglu
,
K. D.
Morgan
,
C. J.
Hansen
, and
S. L.
Brunton
, “
Characterizing magnetized plasmas with dynamic mode decomposition
,”
Phys. Plasmas
27
,
032108
(
2020
).
71.
A.
Alessandri
,
P.
Bagnerini
,
M.
Gaggero
,
D.
Lengani
, and
D.
Simoni
, “
Dynamic mode decomposition for the inspection of three-regime separated transitional boundary layers using a least squares method
,”
Phys. Fluids
31
,
044103
(
2019
).
72.
M.
Liu
,
L.
Tan
, and
S.
Cao
, “
Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump
,”
Renewable Energy
139
,
1159
(
2019
).
73.
R.
Qiu
,
R.
Huang
,
Y.
Wang
, and
C.
Huang
, “
Dynamic mode decomposition and reconstruction of transient cavitating flows around a Clark-Y hydrofoil
,”
Theor. Appl. Mech. Lett.
10
,
327
(
2020
).
74.
W.
Wu
,
C.
Meneveau
, and
R.
Mittal
, “
Spatio-temporal dynamics of turbulent separation bubbles
,”
J. Fluid Mech.
883
,
A45
(
2020
).
75.
E.
Ramos
,
G.
Darze
,
F.
Nascimento
,
J.
Faccini
, and
G.
Giraldi
, “
Comparison of dynamic mode decomposition and deep learning techniques for two-phase flows analysis
,”
Flow, Turbul. Combust.
105
,
1345
(
2020
).
76.
S.
Le Clainche
and
J. M.
Vega
, “
Higher order dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
16
,
882
(
2017
).
77.
A.
Eftekhari
,
R.
Hauser
, and
A.
Grammenos
, “
MOSES: A streaming algorithm for linear dimensionality reduction
,”
IEEE Trans. Pattern Anal. Mach. Intell.
42
,
2901
(
2020
).
78.
T.
Holzmann
,
Mathematics, Numerics, Derivations and Openfoam®
(
Holzmann CFD
,
Loeben, Germany
,
2019
).
79.
J.
Roenby
,
H.
Bredmose
, and
H.
Jasak
, “
Isoadvector: Geometric VOF on general meshes
,” in
OpenFOAM®
(
Springer
,
2018
).
80.
J.
Roenby
,
H.
Bredmose
, and
H.
Jasak
, “
A computational method for sharp interface advection
,”
R. Soc. Open Sci.
3
,
160405
(
2016
).
81.
J.
Vencels
,
P.
Råback
, and
V.
Geža
, “
EOF-library: Open-source Elmer FEM and OpenFOAM coupler for electromagnetics and fluid dynamics
,”
SoftwareX
9
,
68
(
2019
).
82.
I.
Mezic
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
(
2005
).
83.
S. T. M.
Dawson
,
M. S.
Hemati
,
M. O.
Williams
, and
C. W.
Rowley
, “
Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition
,”
Exp. Fluids
57
,
42
(
2016
).
84.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
,
E.
Kaiser
, and
J. N.
Kutz
, “
Chaos as an intermittently forced linear system
,”
Nat. Commun.
8
,
19
(
2017
).
85.
B.
Loring
,
H.
Karimabadi
, and
V.
Rortershteyn
, “
A screen space GPGPU surface LIC algorithm for distributed memory data parallel sort last rendering infrastructures
,”
Report No. LBNL-181325
[Lawrence Berkeley National Lab. (LBNL), Berkeley, CA,
2014
].
86.
J.
Fröhlich
,
S.
Schwarz
,
S.
Heitkam
,
C.
Santarelli
,
C.
Zhang
,
T.
Vogt
,
S.
Boden
,
A.
Andruszkiewicz
,
K.
Eckert
,
S.
Odenbach
, and
S.
Eckert
, “
Influence of magnetic fields on the behavior of bubbles in liquid metals
,”
Eur. Phys. J. Spec. Top.
220
,
167
(
2013
).
87.
P.
Zvejnieks
,
M.
Birjukovs
,
M.
Klevs
,
M.
Akashi
,
S.
Eckert
, and
A.
Jakovics
, “
MHT-X: Offline multiple hypothesis tracking with algorithm X
,” arXiv:2101.05202 (
2020
).
You do not currently have access to this content.