Effects of low-temperature chemistry induced by ultrafine water droplet evaporation on reaction front development from an ignition spot with temperature gradient are studied in this work. The EulerianEulerian method is used to simulate the gasliquid two-phase reactive flows, and the physical model is one-dimensional spherical reactor with stoichiometric gaseous n-heptane/air mixture and ultrafine monodisperse water droplets (initial diameter 5 μm). Homogeneous ignitions of two-phase mixtures are first simulated. The water droplets can completely evaporate in the reactor prior to ignition, and hence pronouncedly reduce gas temperature, which may induce the low-chemistry reactions. It is found that the turnover temperature for negative temperature coefficient range increases with droplet volume fraction. Three-stage ignitions are present when the volume fraction is beyond a critical value, that is, low-temperature, intermediate-temperature, and high-temperature ignitions. The chemical explosive mode analysis also confirms the low-chemistry reactions induced by the evaporation of ultrafine water droplets. Then, reaction front development from an ignition spot with temperature gradient in two-phase mixtures is analyzed based on one-dimensional simulations. Different modes for reaction front origin in the spot are identified, based on the initial gas temperature and lower turnover temperature. Specifically, the reaction front can be initiated at the left and right ends of the ignition spot, and inside it. Detailed reaction front developments corresponding to the above three modes are discussed. In addition, the pressure wave from high-temperature ignition is important, compared to those from low and intermediate chemistries. The reaction front propagation speed and thermal states of fluid particles corresponding to different reaction front initiation modes are analyzed. Moreover, autoignition modes are summarized in the diagrams of normalized temperature gradient vs normal acoustic time and droplet volume fraction. The detonation limits of two-phase mixtures highly depend on the droplet volume fraction and are not regularly peninsular-shaped, like those for purely gaseous mixtures.

1.
Z.
Wang
,
H.
Liu
, and
R. D.
Reitz
, “
Knocking combustion in spark-ignition engines
,”
Prog. Energy Combust. Sci.
61
,
78
(
2017
).
2.
K. P.
Grogan
,
S. S.
Goldsborough
, and
M.
Ihme
, “
Ignition regimes in rapid compression machines
,”
Combust. Flame
162
,
3071
(
2015
).
3.
J.
Rudloff
,
J. M.
Zaccardi
,
S.
Richard
,
J. M.
Anderlohr
,
N.
Peters
,
B.
Kerschgens
,
G.
Paczko
,
C.
Dahnz
, and
U.
Spicher
, “
Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode
,”
Proc. Combust. Inst.
34
,
2959
(
2013
).
4.
C.
Dahnz
and
U.
Spicher
, “
Irregular combustion in supercharged spark ignition engines–pre-ignition and other phenomena
,”
Int. J. Engine Res.
11
,
485
(
2010
).
5.
N.
Peters
,
B.
Kerschgens
, and
G.
Paczko
, “
Super-knock prediction using a refined theory of turbulence
,”
SAE Int. J. Engines
6
,
953
(
2013
).
6.
H.
Wei
,
X.
Zhang
,
H.
Zeng
,
R.
Deiterding
,
J.
Pan
, and
L.
Zhou
, “Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space,”
Phys. Fluids
31
(
7
),
076106
(
2019
).
7.
M.
Reynaud
,
F.
Virot
, and
A.
Chinnayya
, “
A computational study of the interaction of gaseous detonations with a compressible layer
,”
Phys. Fluids
29
,
056101
(
2017
).
8.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
9.
Y.
Fang
,
Y.
Zhang
,
X.
Deng
, and
H.
Teng
, “
Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures
,”
Phys. Fluids
31
,
026108
(
2019
).
10.
Z.
Wang
,
H.
Liu
,
T.
Song
,
Y.
Qi
,
X.
He
,
S.
Shuai
, and
J.
Wang
, “
Relationship between super-knock and pre-ignition
,”
Int. J. Engine Res.
16
,
166
(
2015
).
11.
Z.
Wang
,
Y.
Qi
,
X.
He
,
J.
Wang
,
S.
Shuai
, and
C. K.
Law
, “
Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation
,”
Fuel
144
,
222
(
2015
).
12.
Y. B.
Zeldovich
, “
Regime classification of an exothermic reaction with nonuniform initial conditions
,”
Combust. Flame
39
,
211
(
1980
).
13.
D.
Bradley
,
C.
Morley
,
X. J.
Gu
, and
D. R.
Emerson
, “
Amplified pressure waves during autoignition: Relevance to CAI engines
,”
SAE Trans.
111
,
2679
2690
(
2002
).
14.
X. J.
Gu
,
D. R.
Emerson
, and
D.
Bradley
, “
Modes of reaction front propagation from hot spots
,”
Combust. Flame
133
,
63
(
2003
).
15.
D.
Bradley
and
G. T.
Kalghatgi
, “
Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines
,”
Combust. Flame
156
,
2307
(
2009
).
16.
D.
Bradley
, “
Autoignitions and detonations in engines and ducts
,”
Philos. Trans. R. Soc., A
370
,
689
(
2012
).
17.
J.
Pan
,
S.
Dong
,
H.
Wei
,
T.
Li
,
G.
Shu
, and
L.
Zhou
, “
Temperature gradient induced detonation development inside and outside a hotspot for different fuels
,”
Combust. Flame
205
,
269
(
2019
).
18.
Y.
Gao
,
P.
Dai
, and
Z.
Chen
, “
Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures
,”
Combust. Theory Modell.
24
,
245
(
2020
).
19.
J.
Pan
,
H.
Wei
,
G.
Shu
,
Z.
Chen
, and
P.
Zhao
, “
The role of low temperature chemistry in combustion mode development under elevated pressures
,”
Combust. Flame
174
,
179
(
2016
).
20.
J.
Pan
,
H.
Wei
,
G.
Shu
, and
R.
Chen
, “
Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions
,”
Combust. Flame
185
,
63
(
2017
).
21.
H.
Terashima
and
M.
Koshi
, “
Mechanisms of strong pressure wave generation in end-gas autoignition during knocking combustion
,”
Combust. Flame
162
,
1944
(
2015
).
22.
H.
Terashima
,
A.
Matsugi
, and
M.
Koshi
, “
Origin and reactivity of hot-spots in end-gas autoignition with effects of negative temperature coefficients: Relevance to pressure wave developments
,”
Combust. Flame
184
,
324
(
2017
).
23.
H.
Terashima
,
A.
Matsugi
, and
M.
Koshi
, “
End-gas autoignition behaviors under pressure wave disturbance
,”
Combust. Flame
203
,
204
(
2019
).
24.
P.
Dai
,
Z.
Chen
,
S.
Chen
, and
Y.
Ju
, “
Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient
,”
Proc. Combust. Inst.
35
,
3045
(
2015
).
25.
P.
Dai
and
Z.
Chen
, “
Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition
,”
Combust. Flame
162
,
4183
(
2015
).
26.
P.
Dai
and
Z.
Chen
, “
Effects of NOx addition on autoignition and detonation development in DME/air under engine-relevant conditions
,”
Proc. Combust. Inst.
37
,
4813
(
2019
).
27.
P.
Dai
,
C.
Qi
, and
Z.
Chen
, “
Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient
,”
Proc. Combust. Inst.
36
,
3643
(
2017
).
28.
P.
Dai
,
Z.
Chen
, and
X.
Gan
, “
Autoignition and detonation development induced by a hot spot in fuel-lean and CO2 diluted n-heptane/air mixtures
,”
Combust. Flame
201
,
208
(
2019
).
29.
H.
Yu
and
Z.
Chen
, “
End-gas autoignition and detonation development in a closed chamber
,”
Combust. Flame
162
,
4102
(
2015
).
30.
H.
Yu
,
C.
Qi
, and
Z.
Chen
, “
Effects of flame propagation speed and chamber size on end-gas autoignition
,”
Proc. Combust. Inst.
36
,
3533
(
2017
).
31.
J.
Pan
,
G.
Shu
,
P.
Zhao
,
H.
Wei
, and
Z.
Chen
, “
Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion
,”
Combust. Flame
164
,
319
(
2016
).
32.
M. B.
Luong
,
G. H.
Yu
,
T.
Lu
,
S. H.
Chung
, and
C. S.
Yoo
, “
Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion
,”
Combust. Flame
162
,
4566
(
2015
).
33.
M. B.
Luong
,
S.
Desai
,
F. E.
Hernández Pérez
,
R.
Sankaran
,
B.
Johansson
, and
H. G.
Im
, “
A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities
,”
Proc. Combust. Inst.
38
,
5781
(
2021
).
34.
F.
Hoppe
,
M.
Thewes
,
H.
Baumgarten
, and
J.
Dohmen
, “
Water injection for gasoline engines: Potentials, challenges, and solutions
,”
Int. J. Engine Res.
17
,
86
(
2016
).
35.
A.
Li
,
Z.
Zheng
, and
T.
Peng
, “
Effect of water injection on the knock, combustion, and emissions of a direct injection gasoline engine
,”
Fuel
268
,
117376
(
2020
).
36.
S.
Zhu
,
B.
Hu
,
S.
Akehurst
,
C.
Copeland
,
A.
Lewis
,
H.
Yuan
,
I.
Kennedy
,
J.
Bernards
, and
C.
Branney
, “
A review of water injection applied on the internal combustion engine
,”
Energy Convers. Manage.
184
,
139
(
2019
).
37.
C.
Wang
,
F.
Zhang
,
E.
Wang
,
C.
Yu
,
H.
Gao
,
B.
Liu
,
Z.
Zhao
, and
C.
Zhao
, “
Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection
,”
Appl. Energy
242
,
248
(
2019
).
38.
J. A.
Harrington
, “
Water addition to gasoline–Effect on combustion, emissions, performance, and knock
,”
SAE Trans.
91
,
1226
1251
(
1982
).
39.
N.
Miganakallu
,
Z.
Yang
,
R.
Rogóż
,
ŁJ.
Kapusta
,
C.
Christensen
,
S.
Barros
, and
J.
Naber
, “
Effect of water-methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines
,”
Appl. Energy
264
,
114750
(
2020
).
40.
Y.
Zhuang
,
Y.
Sun
,
Y.
Huang
,
Q.
Teng
,
B.
He
,
W.
Chen
, and
Y.
Qian
, “
Investigation of water injection benefits on downsized boosted direct injection spark ignition engine
,”
Fuel
264
,
116765
(
2020
).
41.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays,”
Phys. Fluids
33
(
4
),
043307
(
2021
).
42.
Z.
Huang
and
H.
Zhang
, “
On the interactions between a propagating shock wave and evaporating water droplets
,”
Phys. Fluids
32
,
123315
(
2020
).
43.
Y.
Zhuang
,
Q.
Li
,
P.
Dai
, and
H.
Zhang
, “
Autoignition and detonation characteristics of n-heptane/air mixture with water droplets
,”
Fuel
266
,
117077
(
2020
).
44.
Z.
Yu
,
H.
Zhang
, and
P.
Dai
, “
Autoignition and detonation development induced by temperature gradient in n-C7H16/air/H2O mixtures
,”
Phys. Fluids
33
,
017111
(
2021
).
45.
R. J.
Kee
,
F. M.
Rupley
, and
J. A.
Miller
, “
CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics
,”
Report No. SAND89-8009B
,
Sandia National Laboratories
,
Livermore, CA, USA
,
1989
.
46.
R.
Kee
,
J.
Grcar
,
M.
Smooke
,
J.
Miller
, and
E.
Meeks
, “
PREMIX: A Fortran program for modeling steady laminar one-dimensional
,”
Report No. SAND85-8249
,
Sandia National Laboratories
,
Livermore, CA, USA
,
1985
.
47.
Z.
Chen
,
Studies on the Initiation, Propagation, and Extinction of Premixed Flames
(
Princeton University
,
Princeton, NJ, USA
,
2009
).
48.
M.
Sanjosé
,
J. M.
Senoner
,
F.
Jaegle
,
B.
Cuenot
,
S.
Moreau
, and
T.
Poinsot
, “
Fuel injection model for Euler–Euler and Euler–Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor
,”
Int. J. Multiphase Flow
37
,
514
(
2011
).
49.
L.
Qiao
, “
Transient flame propagation process and flame-speed oscillation phenomenon in a carbon dust cloud
,”
Combust. Flame
159
,
673
(
2012
).
50.
S.
Eidelman
and
A.
Burcat
, “
Evolution of a detonation wave in a cloud of fuel droplets. Part I. Influence of igniting explosion
,”
AIAA J.
18
,
1103
(
1980
).
51.
A.
Burcat
and
S.
Eidelman
, “
Evolution of a detonation wave in a cloud of fuel droplets. Part II. Influence of fuel droplets
,”
AIAA J.
18
,
1233
(
1980
).
52.
R.
Blouquin
and
G.
Joulin
, “
On the quenching of premixed flames by water sprays: Influences of radiation and polydispersity
,”
Symp. (Int.) Combust.
27
,
2829
(
1998
).
53.
N. S.
Belyakov
,
V. I.
Babushok
, and
S. S.
Minaev
, “
Influence of water mist on propagation and suppression of laminar premixed flame
,”
Combust. Theory Modell.
22
,
394
(
2018
).
54.
B.
Abramzon
and
W. A.
Sirignano
, “
Droplet vaporization model for spray combustion calculations
,”
Int. J. Heat Mass Transfer
32
,
1605
(
1989
).
55.
Q.
Meng
,
M.
Zhao
,
H.
Zheng
, and
H.
Zhang
, “
Eulerian–Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition
,”
Fuel
290
,
119808
(
2021
).
56.
L.
Schiller
, “
A drag coefficient correlation
,”
Z. Ver. Dtsch. Ing.
77
,
318
320
(
1935
).
57.
S.
Cheatham
and
K.
Kailasanath
, “
Numerical modelling of liquid-fuelled detonations in tubes
,”
Combust. Theory Modell.
9
,
23
(
2005
).
58.
B. E.
Poling
,
J. M.
Prausnittz
, and
J. P.
O'Connell
,
The Properties of Gases and Liquids
, 5th ed. (
McGraw-Hill Education
,
2001
).
59.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops. Part I
,”
Chem. Eng. Prog.
48
(
3
),
141
146
(
1952
).
60.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
2011
).
61.
Z.
Chen
, “
Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit
,”
Combust. Flame
157
,
2267
(
2010
).
62.
M.
Sun
and
K.
Takayama
, “
Conservative smoothing on an adaptive quadrilateral grid
,”
J. Comput. Phys.
150
,
143
(
1999
).
63.
S.
Liu
,
J. C.
Hewson
,
J. H.
Chen
, and
H.
Pitsch
, “
Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow
,”
Combust. Flame
137
,
320
(
2004
).
64.
M.
Zhao
,
Z.
Ren
, and
H.
Zhang
, “
Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions
,”
Combust. Flame
226
,
285
(
2021
).
65.
Z.
Luo
,
C. S.
Yoo
,
E. S.
Richardson
,
J. H.
Chen
,
C. K.
Law
, and
T.
Lu
, “
Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly heated coflow
,”
Combust. Flame
159
,
265
(
2012
).
66.
R.
Shan
,
C. S.
Yoo
,
J. H.
Chen
, and
T.
Lu
, “
Computational diagnostics for n-heptane flames with chemical explosive mode analysis
,”
Combust. Flame
159
,
3119
(
2012
).
67.
T. F.
Lu
,
C. S.
Yoo
,
J. H.
Chen
, and
C. K.
Law
, “
Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis
,”
J. Fluid Mech.
652
,
45
(
2010
).
68.
W.
Wu
,
Y.
Piao
,
Q.
Xie
, and
Z.
Ren
, “
Flame diagnostics with a conservative representation of chemical explosive mode analysis
,”
AIAA J.
57
,
1355
(
2019
).
69.
S. H.
Lam
and
D. A.
Goussis
, “
The CSP method for simplifying kinetics
,”
Int. J. Chem. Kinet.
26
,
461
(
1994
).
70.
D. A.
Goussis
,
H. G.
Im
,
H. N.
Najm
,
S.
Paolucci
, and
M.
Valorani
, “
The origin of CEMA and its relation to CSP
,”
Combust. Flame
227
,
396
(
2021
).
71.
W.
Ji
,
P.
Zhao
,
T.
He
,
X.
He
,
A.
Farooq
, and
C. K.
Law
, “
On the controlling mechanism of the upper turnover states in the NTC regime
,”
Combust. Flame
164
,
294
(
2016
).
72.
X.
Zhang
,
C.
Yuan
,
L.
Zhou
,
W.
Zhao
,
Z.
Liu
, and
H.
Wei
, “
Effects of initial temperature on ignition and flame propagation of dual-fuel mixture in mixing layer
,”
Combust. Flame
225
,
468
(
2021
).
73.
H. D.
Ng
and
J. H. S.
Lee
, “
Direct initiation of detonation with a multi-step reaction scheme
,”
J. Fluid Mech.
476
,
179
(
2003
).
74.
C.
Qi
and
Z.
Chen
, “
Effects of temperature perturbation on direct detonation initiation
,”
Proc. Combust. Inst.
36
,
2743
(
2017
).
75.
R.
Zhou
and
J. P.
Wang
, “
Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
,”
Combust. Flame
159
,
3632
(
2012
).
76.
C. A. Z.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Detonation initiation by compressible turbulence thermodynamic fluctuations
,”
Combust. Flame
213
,
172
(
2020
).
77.
R. S.
Volkov
and
P. A.
Strizhak
, “
Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature
,”
Appl. Therm. Eng.
127
,
141
(
2017
).

Supplementary Material

You do not currently have access to this content.