In recent years, pulmonary diseases have posed severe health problems because of increasing air pollution. Some of the promising drug delivery devices for administering the active pharmaceutical ingredients through the pulmonary route include a pressurized metered-dose inhaler and dry powder inhaler (DPI) for the management of respiratory illness. The drug settling (deposition) efficiency in different regions of a human respiratory tract (HRT) for different drug particle sizes is computed using the discrete phase model in the current study. A computer tomography-based realistic HRT replica is used for this purpose with different inhalation rates following a realistic inhalation profile through the DPI device. Unsteady flow analysis is carried out in a human respiratory system up to the sixth-generation bronchi. The particle force balance equation is used in the discrete-phase model to simulate the motion of drug particles in the HRT. Low, moderate, and high inhalation rates following realistic inhalation profiles are used in the present study. The particles of larger size are deposited more in the oral cavity and are deposited higher at a higher inhalation rate due to higher inertia force. It is also observed that drug particle size plays a key role in drug delivery through dry powder inhalers. It is also found that drugs should contain smaller-sized particles (called fine particles) to enable their reach in the distal bronchi.

1.
Ahookhosh
,
K.
,
Yaqoubi
,
S.
,
Mohammad Pourfard
,
M.
,
Hamishehkar
,
H.
, and
Aminfar
,
H.
, “
Experimental investigation of aerosol deposition through a realistic respiratory airway replica: An evaluation for MDI and DPI performance
,”
Int. J. Pharm.
566
,
157
172
(
2019
).
2.
Atzeni
,
C.
,
Lesma
,
G.
,
Dubini
,
G.
,
Masi
,
M.
,
Rossi
,
F.
, and
Bianchi
,
E.
, “
Computational fluid dynamic models as tools to predict aerosol distribution in tracheobronchial airways
,”
Sci. Rep.
11
(
1
),
1109
(
2021
).
3.
Augusto
,
L. L. X.
,
Lopes
,
G. C.
, and
Gonçalves
,
J. A. S.
, “
A CFD study of deposition of pharmaceutical aerosols under different respiratory conditions
,”
Braz. J. Chem. Eng.
33
(
3
),
549
558
(
2016
).
4.
Balásházy
,
I.
,
Farkas
,
A.
,
Hofmann
,
W.
, and
Kurunczi
,
S.
, “
Local deposition distributions of inhaled radionuclides in the human tracheobronchial tree
,”
Radiat. Prot. Dosim.
99
(
1
),
469
470
(
2002
).
5.
Borghardt
,
J. M.
,
Kloft
,
C.
, and
Sharma
,
A.
, “
Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes
,”
Can. Respir. J.
2018
,
2732017
.
6.
Borojeni
,
A. A. T.
,
Noga
,
M. L.
,
Vehring
,
R.
, and
Finlay
,
W. H.
, “
Measurements of total aerosol deposition in intrathoracic conducting airway replicas of children
,”
J. Aerosol Sci.
73
,
39
47
(
2014
).
7.
Chakravarty
,
A.
,
Patankar
,
N. A.
, and
Panchagnula
,
M. V.
, “
Aerosol transport in a breathing alveolus
,”
Phys. Fluids
31
,
121901
(
2019
).
8.
Chan
,
T. L.
, and
Lippmann
,
M.
, “
Experimental measurement and empirical modelling of the regional deposition of inhaled particles in humans
,”
Am. Ind. Hyg. Assoc. J.
41
,
399
409
(
1980
).
9.
Cheng
,
Y. S.
, “
Aerosol deposition in the extrathoracic region
,”
Aerosol Sci. Technol.
37
(
8
),
659
671
(
2003
).
10.
Das
,
P.
,
Nof
,
E.
,
Amirav
,
I.
,
Kassinos
,
S. C.
, and
Sznitman
,
J.
, “
Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD)
,”
PLoS One
13
(
11
),
e0207711
(
2018
).
11.
Dal Negro
,
R. W.
, “
Dry powder inhalers and the right things to remember: A concept review
,”
Multidiscip. Respir. Med.
10
(
1
),
13
(
2015
).
12.
Dong
,
J.
,
Li
,
J.
,
Tian
,
L.
, and
Tu
,
J.
, “
Transport and deposition of ultrafine particles in the upper tracheobronchial tree: A comparative study between approximate and realistic respiratory tract models
,”
Comput. Methods Biomech. Biomed. Eng.
(published online) (
2021
).
13.
Elcner
,
J.
,
Lizal
,
F.
,
Jedelsky
,
J.
,
Jicha
,
M.
, and
Chovancova
,
M.
, “
Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results
,”
Biomech. Model. Mechanobiol.
15
,
447
469
(
2016
).
14.
Faizal
,
W. M.
,
Ghazali
,
N. N. N.
,
Khor
,
C. Y.
,
Badruddin
,
I. A.
,
Zainon
,
M. Z.
,
Yazid
,
A. A.
,
Ibrahim
,
N. B.
, and
Razi
,
R. M.
, “
Computational fluid dynamics modelling of human upper airway: A review
,”
Comput. Methods Programs Biomed.
196
,
105627
105622
(
2020
).
15.
Farnoud
,
A.
,
Tofighian
,
H.
,
Baumann
,
I.
,
Garcia
,
G. J. M.
,
Schmid
,
O.
,
Gutheil
,
E.
, and
Rashidi
,
M. M.
, “
Large eddy simulations of airflow and particle deposition in pulsating bidirectional nasal drug delivery
,”
Phys. Fluids
32
,
101905
(
2020
).
16.
Farkas
,
A.
,
Lizal
,
F.
,
Jedelsky
,
J.
,
Elcner
,
J.
,
Horváth
,
A.
, and
Jicha
,
M.
, “
Simulation of airway deposition of an aerosol drug in COPD patients
,”
Pharmaceutics
11
(
4
),
153
162
(
2019
).
17.
Finlay
,
W. H.
,
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
(
Academic Press
,
London
,
2019
).
18.
Inthavong
,
K.
,
Zhang
,
K.
, and
Tu
,
J.
, “
Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway
,”
Comput. Methods Biomech. Biomed. Eng.
14
(
7
),
633
643
(
2011
).
19.
Islam
,
M. S.
,
Larpruenrudee
,
P.
,
Paul
,
A. R.
,
Paul
,
G.
,
Gemci
,
T.
,
Gu
,
Y. T.
, and
Saha
,
S. C.
, “
SARS CoV-2 aerosol: How far it can travel to the lower airways?
,”
Phys. Fluids
33
,
061903
(
2021
).
20.
Islam
,
M. S.
,
Paul
,
G.
,
Ong
,
H. X.
,
Young
,
P. M.
,
Gu
,
Y. T.
, and
Saha
,
S. C.
, “
A review of respiratory anatomical development, air flow characterization and particle deposition
,”
Int. J. Environ. Res. Public Health
17
,
380
(
2020
).
21.
Islam
,
M. S.
,
Saha
,
S. C.
,
Gemci
,
T.
,
Yang
,
I. A.
,
Sauret
,
E.
,
Ristovski
,
Z.
, and
Gu
,
Y. T.
, “
Euler-Lagrange prediction of diesel-exhaust polydisperse particle transport and deposition in lung: Anatomy and turbulence effects
,”
Sci. Rep.
9
,
12423
(
2019a
).
22.
Islam
,
M. S.
,
Saha
,
S. C.
,
Sauret
,
E.
,
Gu
,
Y. T.
, and
Ristovski
,
Z. D.
, “
Ultrafine particle transport and deposition in a large scale 17-generation lung model
,”
J. Biomech.
64
,
16
25
(
2017
).
23.
Islam
,
M. S.
,
Saha
,
S. C.
,
Sauret
,
E.
,
Ong
,
H.
,
Young
,
P.
, and
Gu
,
Y. J. T. R.
, “
Euler–Lagrange approach to investigate respiratory anatomical shape effects on aerosol particle transport and deposition
,”
Toxicol. Res. Appl.
3
,
2397847319894675
(
2019b
).
24.
Jedelsky
,
J.
,
Lizal
,
F.
, and
Jicha
,
M.
, “
Characteristics of turbulent particle transport in human airways under steady and cyclic flows
,”
Int. J. Heat Fluid Flow
35
,
84
92
(
2012
).
25.
Kannan
,
R. R.
,
Przekwas
,
A.
,
Singh
,
N.
,
Delvadia
,
R.
,
Tian
,
G.
, and
Walenga
,
R.
, “
Pharmaceutical aerosols deposition patterns from a dry powder inhaler: Euler Lagrangian prediction and validation
,”
Med. Eng. Phys.
42
,
35
47
(
2017
).
26.
Karakosta
,
P.
,
Alexopoulos
,
A. H.
, and
Kiparissides
,
C.
, “
Computational model of particle deposition in the nasal cavity under steady and dynamic flow
,”
Comput. Methods Biomech. Biomed. Eng.
18
,
514
526
(
2015
).
27.
Khan
,
I.
,
Elhissi
,
A.
,
Shah
,
M.
,
Alhnan
,
M. A.
, and
Ahmed
,
W.
, “
Liposome-based carrier systems and devices used for pulmonary drug delivery
,” in
Biomaterials and Medical Tribology
, Woodhead Publishing Series in Biomaterials, edited by
J. P.
Davim
(
Woodhead Publishing
,
2013
), Chap. 9, pp.
395
443
.
28.
Lambert
,
A. R.
,
O'Shaughnessy
,
P.
,
Tawhai
,
M. H.
,
Hofman
,
E. A.
, and
Lin
,
C.
, “
Regional deposition of particles in an image-based airway model: Large-eddy simulation and left-right lung ventilation asymmetry
,”
Aerosol Sci. Technol.
45
,
11
25
(
2011
).
29.
Laube
,
B. L.
, and
Dolovich
,
M. B.
, “
Aerosols and aerosol drug delivery systems
,” in
Middleton's Allergy
, 8th ed., edited by
N. F.
Adkinson
,
B. S.
Bochner
,
A. W.
Burks
,
W. W.
Busse
,
S. T.
Holgate
,
R. F.
Lemanske
, and
R. E.
O'Hehir
(
W.B. Saunders
,
2014
), Chap. 66, pp.
1066
1082
.
30.
Lin
,
C. L.
,
Tawhai
,
M. H.
, and
Hoffman
,
E. A.
, “
Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs
,”
Wiley Interdiscip. Rev.
5
,
643
655
(
2013
).
31.
Lindert
,
S.
,
Below
,
A.
, and
Breitkreutz
,
J.
, “
Performance of dry powder inhalers with single dosed capsules in preschool children and adults using improved upper airway models
,”
Pharmaceutics
6
,
36
51
(
2014
).
32.
Liu
,
Z.
,
Li
,
A.
,
Xu
,
X.
, and
Rao
,
R.
, “
Computational fluid dynamics simulation of airflow patterns and particle deposition characteristics in children upper human respiratory tracts
,”
Eng. Appl. Comput. Fluid Mech.
6
(
4
),
556
571
(
2012
).
33.
Lizal
,
F.
,
Elcner
,
J.
,
Jedelsky
,
J.
,
Maly
,
M.
,
Jicha
,
M.
,
Farkas
,
Á.
,
Belka
,
M.
,
Rehak
,
Z.
,
Adam
,
J.
,
Brinek
,
A.
,
Laznovsky
,
J.
,
Zikmund
,
T.
, and
Kaiser
,
J.
, “
The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways
,”
J. Aerosol Sci.
150
,
105649
(
2020
).
34.
Longest
,
P. W.
, and
Vinchurkar
,
S.
, “
Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data
,”
Med. Eng. Phys.
29
(
3
),
350
366
(
2007
).
35.
Menter
F. R.
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
36.
Morsi
,
S.
, and
Alexander
,
A.
, “
An investigation of particle trajectories in two-phase flow systems
,”
J. Fluid Mech.
55
(
2
),
193
208
(
1972
).
37.
Newman
,
S. P.
, “
Aerosols
,” in
Encyclopedia of Respiratory Medicine
, edited by
G. J.
Laurent
and
S. D.
Shapiro
(
Academic Press
,
2006
), pp.
58
64
.
38.
Nordlund
,
M.
,
Belka
,
M.
,
Kuczaj
,
A. K.
,
Lizal
,
F.
,
Elcner
,
J. J.
,
Jicha
,
M.
,
Sauser
,
Y.
,
Le Bouhellec
,
S.
,
Cosandey
,
S.
,
Majeed
,
S.
,
Vuillaume
,
G.
,
Peitsch
,
M. C.
, and
Hoeng
,
J.
, “
Multi-component aerosol particle deposition in a realistic cast of the human upper respiratory tract
,”
Inhalation Toxicol.
29
(
3
),
113
125
(
2017
).
39.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
, “
Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs
,”
Ann. Biomed. Eng.
31
,
374
390
(
2003
).
40.
Rahimi-Gorji
,
M.
,
Pourmehran
,
O.
,
Gorji-Bandpy
,
M.
, and
Gorji
,
T. B.
, “
CFD simulation of airflow behavior and particle transport and deposition in different inhalation conditions through the realistic model of human airways
,”
J. Mol. Liq.
209
,
121
133
(
2015
).
41.
Sallam
,
A. A. N.
, “
Quality by design considerations for product development of dry-powder inhalers
,” in
Pharmaceutical Quality by Design: Principles and Applications
, edited by
S.
Beg
and
M. S.
Hasnain
(
Academic Press
,
2019
), Chap. 9, pp.
173
192
.
42.
Sera
,
T.
,
Uesugi
,
K.
,
Yagi
,
N.
, and
Yokota
,
H.
, “
Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model
,”
Comput. Methods Biomech. Biomed. Eng.
18
,
1427
1435
(
2015
).
43.
Shachar-Berman
,
L.
,
Bhardwaj
,
S.
,
Ostrovski
,
Y.
,
Das
,
P.
,
Koullapis
,
P.
,
Kassinos
,
S.
, and
Sznitman
,
J.
, “
In silico optimization of fiber-shaped aerosols in inhalation therapy for augmented targeting and deposition across the respiratory tract
,”
Pharmaceutics
12
(
3
),
230
(
2020
).
44.
Srivastav
,
V. K.
,
Jain
,
A.
,
Paul
,
A. R.
, and
Joshi
,
S.
, “
CFD modelling of airflow in human respiratory system
,” in
Proceedings of the 9th International Conference on Mechanical Engineering (ICME-2011)
, Dhaka, Bangladesh, 18–20 December (
2011a
).
45.
Srivastav
,
V. K.
,
Kumar
,
A.
,
Shukla
,
S. K.
,
Paul
,
A. R.
,
Bhatt
,
A. D.
, and
Jain
,
A.
, “
Airflow and aerosol-drug delivery in a CT scan based human respiratory tract with tumor using CFD
,”
J. Appl. Fluid Mech.
7
(
2
),
345
356
(
2014
).
47.
Srivastav
,
V. K.
,
Paul
,
A. R.
, and
Jain
,
A.
, “
Computational fluid dynamics study of airflow and particle transport in third to sixth generation human respiratory tract
,”
Int. J. Emerging Multidiscip. Fluid Sci.
3
(
4
),
227
(
2011b
).
48.
Srivastav
,
V. K.
,
Paul
,
A. R.
, and
Jain
,
A.
, “
Effects of cartilaginous rings on airflow and particle transport through simplified and realistic models of human upper respiratory tracts
,”
Acta Mech. Sin.
29
(
6
),
883
892
(
2013
).
46.
Srivastav
,
V. K.
,
Paul
,
A. R.
, and
Jain
,
A.
, “
Capturing the wall turbulence in CFD simulation of the human respiratory tract
,”
Math. Comput. Simul.
160
(
C
),
23
38
(
2019
).
49.
Telko
,
M. J.
, and
Hickey
,
A. J.
, “
Dry powder inhaler formulation
,”
Respir. Care
50
(
9
),
1209
1227
(
2005
).
50.
Tong
,
Z.
,
Yu
,
A.
,
Chan
,
H. K.
, and
Yang
,
R.
, “
Discrete modelling of powder dispersion in dry powder inhalers: A brief review
,”
Curr. Pharm. Des.
21
(
27
),
3966
3973
(
2015
).
51.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, “
Computational analysis of micron-particle deposition in a human triple bifurcation airway model
,”
Comput. Methods Biomech. Biomed. Eng.
5
,
135
147
(
2002b
).
52.
Zhang
Z.
,
Kleinstreuer
C.
, and
Kim
C. S.
, “
Micro-particle transport and deposition in a human oral airway model
,”
J. Aerosol Sci.
33
,
1635
1652
(
2002a
).
You do not currently have access to this content.