Strong oblique shock waves of granular flow are a steady-state solution formed when a granular free-surface flow deflects around a wedge-shaped obstacle at a supercritical speed, but they do not usually occur because their formation requires specific conditions to be satisfied downstream of the shock wave. This paper discusses the method of generating the strong oblique shock wave in a laboratory experiment and numerical simulation. The experiment is conducted on a plexiglass chute inclined at an angle to the horizontal, in which a dry granular material is released from a hopper at the top of the chute to form a channelized flow that passes a wedge at a downslope location. In order to generate a strong oblique shock wave, a second gate is established at the downstream of the wedge to control the material to flow out only at the designed time and height. Such a granular flowing process is simulated with a depth-averaged granular flow model, where the above two-gate system is mirrored into the inlet and outlet boundaries, respectively. The formation of the strong oblique shock is investigated through the transient solution of the flow field, and a good agreement is observed between the experiment and the simulation. Then, the steady-state solution of the interaction between the weak and strong oblique shocks is analyzed in the experiment and simulation. This result can be regarded as the third solution of granular shock because it can be formed by just changing the opening time of the second gate. With the dramatic change in flow thickness and velocity across the strong oblique shock, the bulk inertial number, used to quantify the rheological relation of granular materials, becomes extremely small, but it does not seem to affect the behavior of the flow discussed in this paper.

1.
H.
Rouse
,
Fluid Mechanics For Hydraulic Engineers
, 1st ed. (
McGraw-Hill Book Co., Inc
.,
New York, NY
,
1938
).
2.
A. T.
Ippen
, “
Mechanics of supercritical flow
,”
Trans. Am. Soc. Civ. Eng.
116
,
269
295
(
1951
).
3.
J. J.
Stoker
,
Water Waves
(
Interscience
,
1957
).
4.
S. B.
Savage
, “
Gravity flow of cohesionless granular materials in chutes and channels
,”
J. Fluid Mech.
92
,
53
96
(
1979
).
5.
S. B.
Savage
and
K.
Hutter
, “
The motion of a finite mass of granular material down a rough incline
,”
J. Fluid Mech.
199
,
177
215
(
1989
).
6.
K.
Hutter
,
M.
Siegel
,
S. B.
Savage
, and
Y.
Nohguchi
, “
Two-dimensional spreading of granular avalanche down an inclined plane.
Part I: Theory,” Acta Mech.
100
,
37
68
(
1993
).
7.
M.
Wieland
,
J. M. N. T.
Gray
, and
K.
Hutter
, “
Channelized free surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature
,”
J. Fluid Mech.
392
,
73
100
(
1999
).
8.
J. M. N. T.
Gray
,
Y.-C.
Tai
, and
S.
Noelle
, “
Shock waves, dead-zones and particle-free regions in rapid granular free surface flows
,”
J. Fluid Mech.
491
,
161
181
(
2003
).
9.
O.
Pouliquen
, “
Scaling laws in granular flows down rough inclined planes
,”
Phys. Fluids
11
(
3
),
542
548
(
1999
).
10.
O.
Pouliquen
, “
On the shape of granular fronts down rough inclined planes
,”
Phys. Fluids
11
(
7
),
1956
1958
(
1999
).
11.
O.
Pouliquen
and
Y.
Forterre
, “
Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane
,”
J. Fluid Mech.
453
,
133
151
(
2002
).
12.
G. D. R.
Midi
, “
On dense granular flows
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
14
,
341
365
(
2004
).
13.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
Crucial role of sidewalls in granular surface flows: Consequences for the rheology
,”
J. Fluid Mech.
541
,
167
192
(
2005
).
14.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
A constitutive law dense granular flows
,”
Nature
441
,
727
730
(
2006
).
15.
Y.
Forterre
, “
Kapiza waves as a test for three-dimensional granular flow rheology
,”
J. Fluid Mech.
563
,
123
132
(
2006
).
16.
P.-Y.
Lagrée
,
L.
Staron
, and
S.
Popinet
, “
The granular column collapse as a continuum: Validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology
,”
J. Fluid Mech.
686
,
378
408
(
2011
).
17.
L.
Staron
,
P.-Y.
Lagrée
, and
S.
Popinet
, “
The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra
,”
Phys. Fluids
24
,
103301
(
2012
).
18.
A.
Holyoake
and
J. N.
McElwaine
, “
High-speed granular chute flows
,”
J. Fluid Mech.
710
,
35
71
(
2012
).
19.
J. M. N. T.
Gray
and
A. N.
Edwards
, “
A depth-averaged μ(I)-rheology for shallow granular free-surface flows
,”
J. Fluid Mech.
755
,
503
534
(
2014
).
20.
T.
Barker
,
D. G.
Schaeffer
,
P.
Bohorquez
, and
J. M. N. T.
Gray
, “
Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow
,”
J. Fluid Mech.
779
,
794
818
(
2015
).
21.
J. D.
Goddard
and
J.
Lee
, “
On the stability of the μ(I) rheology for granular flow
,”
J. Fluid Mech.
833
,
302
331
(
2017
).
22.
M.
Trulsson
, “
Rheology and shear jamming of frictional ellipses
,”
J. Fluid Mech.
849
,
718
740
(
2018
).
23.
D.
Nagy
,
P.
Claudin
,
T.
Börzsönyi
, and
E.
Somfai
, “
Flow and rheology of frictional elongated grains
,”
New J. Phys.
22
,
073008
(
2020
).
24.
H.
Ma
and
Y.
Zhao
, “
Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation
,”
Granular Matter
20
,
41
(
2018
).
25.
Y.
Liu
,
Z.
Yu
,
J.
Yang
,
C.
Wassgren
,
J. S.
Curtis
, and
Y.
Guo
, “
Discrete element method investigation of binary granular flows with different particle shapes
,”
Energies
13
,
1841
(
2020
).
26.
Y.
Zhu
,
R.
Delannay
, and
A.
Valance
, “
High-speed confined granular flows down smooth inclines: Scaling and wall friction laws, μ(I) rheology for granular flow
,”
Granular Matter
22
,
82
(
2020
).
27.
E. D.
Fernández-Nieto
,
J.
Garres-Díaz
,
A.
Mangeney
, and
G.
Narbona-Reina
, “
2D granular flows with the μ(I) rheology and side walls friction: A well-balanced multilayer discretization
,”
J. Comput. Phys.
356
,
192
219
(
2018
).
28.
A.
Franci
and
M.
Cremonesi
, “
3D regularized μ(I)-rheology for granular flows simulation
,”
J. Comput. Phys.
378
,
257
277
(
2019
).
29.
Y.-C.
Tai
,
S.
Neolle
,
J. M. N. T.
Gray
, and
K.
Hutter
, “
Shock-capturing and front-tracking methods for granular avalanches
,”
J. Comput. Phys.
175
,
269
301
(
2002
).
30.
E. B.
Pitman
,
C. C.
Nichita
,
A.
Patra
,
A.
Bauer
,
M.
Sheridan
, and
M.
Bursik
, “
Computing granular avalanches and landslides
,”
Phys. Fluids
15
(
12
),
3638
3646
(
2003
).
31.
K. M.
Hákonardóttir
and
A. J.
Hogg
, “
Oblique shocks in rapid granular flows
,”
Phys. Fluids
17
,
077101
(
2005
).
32.
Y.
Amarouchene
and
H.
Kelly
, “
Speed of sound from shock fronts in granular flows
,”
Phys. Fluids
18
,
031707
(
2006
).
33.
J. M. N. T.
Gray
and
X.
Cui
, “
Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows
,”
J. Fluid Mech.
579
,
113
136
(
2007
).
34.
X.
Cui
,
J. M. N. T.
Gray
, and
T.
Jóhannesson
, “
Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland
,”
J. Geophys. Res.
112
,
F04012
, (
2007
).
35.
C. G.
Johnson
and
J. M. N. T.
Gray
, “
Granular jets and hydraulic jumps on an inclined plane
,”
J. Fluid Mech.
675
,
87
116
(
2011
).
36.
X.
Cui
and
J. M. N. T.
Gray
, “
Gravity-driven granular free-surface flow around a circular cylinder
,”
J. Fluid Mech.
720
,
314
337
(
2013
).
37.
S.
Viroulet
,
J. L.
Baker
,
A. N.
Edwards
,
C. G.
Hohnson
,
C.
Gjaltema
,
P.
Clavel
, and
J. M. N. T.
Gray
, “
Multiple solutions for granular flow over a smooth two-dimensional bump
,”
J. Fluid Mech.
815
,
77
116
(
2017
).
38.
R.
Delannay
,
A.
Valance
,
A.
Mangeney
,
O.
Roche
, and
P.
Richard
, “
Granular and particle-laden flows: From laboratory experiments to field observations
,”
J. Phys. D: Appl. Phys.
50
,
053001
(
2017
).
39.
S. S.
Grigorian
,
M. E.
Eglit
, and
I. L.
Iakimov
, “
New state and solution of the problem of the motion of snow avalanche. Snow, Avalanches and Glaciers
,”
Tr. Vysokogorn. Geofiz. Inst.
12
,
104
113
(
1967
).
40.
A. G.
Kulikovskii
and
M. E.
Eglit
, “
Two-dimensional problem of the motion of a snow avalanche along a slope with smoothly changing properties
,”
J. Appl. Math. Mech.
37
(
5
),
792
803
(
1973
).
41.
M. E.
Eglit
, “
Some mathematical models of snow avalanches
,” in
Advances in Mechanics and the Flow of Granular Materials
, edited by
M.
Shahinpoor
(
Clausthal-Zellerfeld and Gulf Publishing Company
,
1983
), Vol.
2
, pp.
577
588
.
42.
S. B.
Savage
and
K.
Hutter
, “
The dynamics of avalanches of granular materials from initiation to run-out.
Part I: Analysis,” Acta Mech.
86
,
201
203
(
1991
).
43.
R.
Greve
and
K.
Hutter
, “
Motion of a granular avalanche in a convex and concave curved chute: Experiments and theoretical predictions
,”
Philos. Trans. R. Soc., A
342
,
573
600
(
1993
).
44.
J. M. N. T.
Gray
,
M.
Wieland
, and
K.
Hutter
, “
Free surface flow of cohesionless granular avalanches over complex basal topography
,”
Proc. R. Soc. A
455
,
1841
1874
(
1999
).
45.
A.
Harten
, “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
,
357
393
(
1983
).
46.
H.
Nessyahu
and
E.
Tadmor
, “
Non-oscillatory central differencing for hyperbolic conservation laws
,”
J. Comput. Phys.
87
,
408
463
(
1990
).
47.
G.-S.
Jiang
,
D.
Levy
,
C.-T.
Lin
,
S.
Osher
, and
E.
Tadmor
, “
High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws
,”
SIAM J. Numer. Anal.
35
,
2147
2168
(
1998
).
48.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations
,”
J. Comput. Phys.
160
,
720
742
(
2000
).
49.
Y.-J.
Liu
, “
Central schemes on overlapping cells
,”
J. Comput. Phys.
209
,
82
104
(
2005
).
50.
G.
Tóth
and
D.
Odstrčil
, “
Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magneto-hydrodynamic problems
,”
J. Comput. Phys.
128
,
82
100
(
1996
).
51.
X.
Cui
, “
Computational and experimental studies of rapid granular free-surface flows around obstacles
,”
Comput. Fluids
89
,
179
190
(
2014
).
52.
J. D.
Anderson
, Jr.
,
Computational Fluid Dynamics
(
McGraw-Hill Education
,
1995
).
53.
B.
Edney
, “
Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock
,”
Report No. 115
, Aeronautical Research Institute of Sweden, Stockholm,
1968
.
54.
F.
Grasso
,
C.
Purpura
,
B.
Chanetz
, and
J.
Délery
, “
Type III and type IV shock/shock interferences: Theoretical and experimental aspects
,”
Aerosp. Sci. Technol.
7
,
93
106
(
2003
).
You do not currently have access to this content.