In this work, the recently proposed frame-invariant Generalized Newtonian Fluid (GNF) constitutive equation [M. Zatloukal, “Frame-invariant formulation of novel generalized Newtonian fluid constitutive equation for polymer melts,” Phys. Fluids 32(9), 091705 (2020)] has been modified to provide uniaxial extensional viscosity at a high strain rate limit corresponding to molecular expression for a fully extended Fraenkel chain reported in Ianniruberto et al. [“Melts of linear polymers in fast flows,” Macromolecules 53(13), 5023–5033 (2020)]. It uses basic rheological and molecular parameters together with the ratio of monomeric friction coefficients for equilibrium and fully aligned chains. The modified GNF model was successfully tested by using steady-state uniaxial extensional viscosity data for well-characterized entangled polymer melts and solutions [namely, linear isotactic polypropylenes, poly(n-butyl acrylate), polyisoprenes, and polystyrenes] covering a wide range of strain rates, including those, at which the chain stretch occurs. Only two fitting parameters were sufficient to describe all uniaxial extensional viscosity data, one related to the Rouse stretch time and the other controlling the extensional thinning and thickening behavior at medium and high strain rates. The model was compared to five different advanced viscoelastic constitutive equations, which are based on Doi–Edwards theory and include chain stretch along with a number of important additions. The ability of the proposed GNF model to represent steady uniaxial extensional viscosities under fast flow conditions for entangled polymer fluids has been shown to be superior to the predictions of selected advanced viscoelastic constitutive equations. It is believed that the modified GNF model can be used in the stable modeling of non-Newtonian polymer liquids, especially in very fast steady-state flows where chain stretch begins to occur.

1.
J. M.
Dealy
and
R. G.
Larson
, “
Structure and rheology of molten polymers: From structure to flow behavior and back again
,” (
Carl Hanser Verlag
,
Munich
,
2006
).
2.
R. I.
Tanner
,
Engineering Rheology, 2nd ed.
(
Oxford University Press
,
Oxford
,
2000
).
3.
D.
Vaes
and
P.
Van Puyvelde
, “
Semi-crystalline feedstock for filament-based 3D printing of polymers
,”
Prog. Polym. Sci.
118
,
101411
(
2021
).
4.
C. M.
González-Henríquez
,
M. A.
Sarabia-Vallejos
, and
J.
Rodriguez-Hernandez
, “
Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications
,”
Prog. Polym. Sci.
94
,
57
116
(
2019
).
5.
S. C.
Ligon
,
R.
Liska
,
J.
Stampfl
,
M.
Gurr
, and
R.
Mülhaupt
, “
Polymers for 3D printing and customized additive manufacturing
,”
Chem. Rev.
117
(
15
),
10212
10290
(
2017
).
6.
Z.
Ouyang
,
E.
Bertevas
,
D.
Wang
,
B. C.
Khoo
,
J.
Férec
,
G.
Ausias
, and
N.
Phan-Thien
, “
A smoothed particle hydrodynamics study of a non-isothermal and thermally anisotropic fused deposition modeling process for a fiber-filled composite
,”
Phys. Fluids
32
(
5
),
053106
(
2020
).
7.
Z.
Ouyang
,
E.
Bertevas
,
L.
Parc
,
B. C.
Khoo
,
N.
Phan-Thien
,
J.
Férec
, and
G.
Ausias
, “
A smoothed particle hydrodynamics simulation of fiber-filled composites in a non-isothermal three-dimensional printing process
,”
Phys. Fluids
31
(
12
),
123102
(
2019
).
8.
E.
Bertevas
,
J.
Férec
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process
,”
Phys. Fluids
30
(
10
),
103103
(
2018
).
9.
K.
Maghsoudi
,
R.
Jafari
,
G.
Momen
, and
M.
Farzaneh
, “
Micro-nanostructured polymer surfaces using injection molding: A review
,”
Mater. Today Commun.
13
,
126
143
(
2017
).
10.
C.
Yang
,
X.-H.
Yin
, and
G.-M.
Cheng
, “
Microinjection molding of microsystem components: New aspects in improving performance
,”
J. Micromech. Microeng.
23
(
9
),
093001
(
2013
).
11.
U. M.
Attia
,
S.
Marson
, and
J. R.
Alcock
, “
Micro-injection moulding of polymer microfluidic devices
,”
Microfluid. Nanofluid.
7
(
1
),
1
28
(
2009
).
12.
J. K.
Oh
,
R.
Drumright
,
D. J.
Siegwart
, and
K.
Matyjaszewski
, “
The development of microgels/nanogels for drug delivery applications
,”
Prog. Polym. Sci.
33
(
4
),
448
477
(
2008
).
13.
J.
Giboz
,
T.
Copponnex
, and
P.
Mélé
, “
Microinjection molding of thermoplastic polymers: A review
,”
J. Micromech. Microeng.
17
(
6
),
R96
R109
(
2007
).
14.
L. J.
Guo
., “
Nanoimprint lithography: Methods and material requirements
,”
Adv. Mater.
19
(
4
),
495
513
(
2007
).
15.
B. D.
Gates
,
Q.
Xu
,
M.
Stewart
,
D.
Ryan
,
C. G.
Willson
, and
G. M.
Whitesides
, “
New approaches to nanofabrication: Molding, printing, and other techniques
,”
Chem. Rev.
105
(
4
),
1171
1196
(
2005
).
16.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
, “
Imprint lithography with 25-nm resolution
,”
Science
272
(
5258
),
85
87
(
1996
).
17.
L. J.
Guo
, “
Recent progress in nanoimprint technology and its applications
,”
J. Phys. D: Appl. Phys.
37
(
11
),
R123
R141
(
2004
).
18.
D.
Bratton
,
D.
Yang
,
J.
Dai
, and
C. K.
Ober
, “
Recent progress in high resolution lithography
,”
Polym. Adv. Technol.
17
(
2
),
94
103
(
2006
).
19.
T.
Barborik
and
M.
Zatloukal
, “
Steady-state modeling of extrusion cast film process, neck-in phenomenon, and related experimental research: A review
,”
Phys. Fluids
32
(
6
),
061302
(
2020
).
20.
T.
Barborik
and
M.
Zatloukal
, “
Effect of heat transfer coefficient, draw ratio, and die exit temperature on the production of flat polypropylene membranes
,”
Phys. Fluids
31
(
5
),
053101
(
2019
).
21.
T.
Barborik
and
M.
Zatloukal
, “
Effect of die exit stress state, Deborah number, uniaxial and planar extensional rheology on the neck-in phenomenon in polymeric flat film production
,”
J. Non-Newtonian Fluid Mech.
255
,
39
56
(
2018
).
22.
T.
Barborik
,
M.
Zatloukal
, and
C.
Tzoganakis
, “
On the role of extensional rheology and Deborah number on the neck-in phenomenon during flat film casting
,”
Int. J. Heat Mass Transfer
111
,
1296
1313
(
2017
).
23.
T.
Kanai
and
G. A.
Campbell
,
Film Processing Advances
(
Hanser Publishers
,
Munich
,
2014
).
24.
T.
Kanai
and
G. A.
Campbell
,
Film Processing
(
Hanser Publishers
,
Munich
,
1999
).
25.
B. A.
Morris
,
The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use
(
Elsevier
,
Amsterdam
,
2017
).
26.
J.
Drabek
and
M.
Zatloukal
, “
Meltblown technology for production of polymeric microfibers/nanofibers: A review
,”
Phys. Fluids
31
(
9
),
091301
(
2019
).
27.
Y.
Kara
and
K.
Molnár
, “
A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications
,”
J. Ind. Text.
(published online,
2021
). .
28.
J.
Drabek
and
M.
Zatloukal
, “
Influence of molecular weight, temperature, extensional rheology on melt blowing process stability for linear isotactic polypropylene
,”
Phys. Fluids
32
(
8
),
083110
(
2020
).
29.
J.
Drabek
and
M.
Zatloukal
, “
Influence of long chain branching on fiber diameter distribution for polypropylene nonwovens produced by melt blown process
,”
J. Rheol.
63
(
4
),
519
532
(
2019
).
30.
J.
Xue
,
T.
Wu
,
Y.
Dai
, and
Y.
Xia
, “
Electrospinning and electrospun nanofibers: Methods, materials, and applications
,”
Chem. Rev.
119
(
8
),
5298
5415
(
2019
).
31.
T. D.
Brown
,
P. D.
Dalton
, and
D. W.
Hutmacher
, “
Melt electrospinning today: An opportune time for an emerging polymer process
,”
Prog. Polym. Sci.
56
,
116
166
(
2016
).
32.
E.
Loccufier
,
J.
Geltmeyer
,
L.
Daelemans
,
D. R.
D'hooge
,
K.
De Buysser
, and
K.
De Clerck
, “
Silica nanofibrous membranes for the separation of heterogeneous azeotropes
,”
Adv. Funct. Mater.
28
(
44
),
1804138
(
2018
).
33.
H. D.
Rowland
,
W. P.
King
,
J. B.
Pethica
, and
G. L. W.
Cross
, “
Molecular confinement accelerates deformation of entangled polymers during squeeze flow
,”
Science
322
(
5902
),
720
724
(
2008
).
34.
C. L.
Soles
and
Y.
Ding
, “
Materials science: Nanoscale polymer processing
,”
Science
322
(
5902
),
689
690
(
2008
).
35.
S. J.
Coombs
,
A. J.
Giacomin
, and
R.
Pasquino
, “
Confinement and complex viscosity
,”
Phys. Fluids
33
,
053104
(
2021
).
36.
B. R.
Whiteside
,
M. T.
Martyn
,
P. D.
Coates
,
P. S.
Allan
,
P. R.
Hornsby
, and
G.
Greenway
, “
Micromoulding: Process characteristics and product properties
,”
Plast., Rubber Compos.
32
(
6
),
231
239
(
2003
).
37.
C. J.
Ellison
,
A.
Phatak
,
D. W.
Giles
,
C. W.
Macosko
, and
F. S.
Bates
, “
Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup
,”
Polymer
48
(
11
),
3306
3316
(
2007
).
38.
H.
Takahashi
,
T.
Matsuoka
, and
T.
Kurauchi
, “
Rheology of polymer melts in high shear rate
,”
J. Appl. Polym. Sci.
30
(
12
),
4669
4684
(
1985
).
39.
A. L.
Kelly
,
A. T.
Gough
,
B. R.
Whiteside
, and
P. D.
Coates
, “
High shear strain rate rheometry of polymer melts
,”
J. Appl. Polym. Sci.
114
(
2
),
864
873
(
2009
).
40.
J.
Drabek
,
M.
Zatloukal
, and
M.
Martyn
, “
Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes
,”
J. Non-Newtonian Fluid Mech.
251
,
107
118
(
2018
).
41.
D.
Yao
and
B.
Kim
., “
Simulation of the filling process in micro channels for polymeric materials
,”
J. Micromech. Microeng.
12
(
5
),
604
610
(
2002
).
42.
R. D.
Chien
,
W. R.
Jong
, and
S. C.
Chen
, “
Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect
,”
J. Micromech. Microeng.
15
(
8
),
1389
1396
(
2005
).
43.
C. S.
Chen
,
S. C.
Chen
,
W. L.
Liaw
, and
R. D.
Chien
, “
Rheological behavior of POM polymer melt flowing through micro-channels
,”
Eur. Polym. J.
44
(
6
),
1891
1898
(
2008
).
44.
S. C.
Chen
,
R. I.
Tsai
,
R. D.
Chien
, and
T. K.
Lin
, “
Preliminary study of polymer melt rheological behavior flowing through micro-channels
,”
Int. Commun. Heat Mass Transfer
32
(
3–4
),
501
510
(
2005
).
45.
S.
Akkoyun
,
C.
Barrès
,
Y.
Béreaux
,
B.
Blottière
, and
J. Y.
Charmeau
, “
Experimental and numerical investigation of pressure-driven microscale flows of polymer melts: New approach
,”
J. Rheol.
58
(
2
),
467
492
(
2014
).
46.
A.
Kelly
,
T.
Gough
,
B.
Whiteside
, and
P. D.
Coates
, “
High strain rate rheology of polymer melts
,”
AIP Conference Proceedings
1152
,
161
167
(
2009
).
47.
A.
Cemal Eringen
and
K.
Okada
, “
A lubrication theory for fluids with microstructure
,”
Int. J. Eng. Sci.
33
(
15
),
2297
2308
(
1995
).
48.
J. N.
Israelachvili
, “
Measurement of the viscosity of liquids in very thin films
,”
J. Colloid Interface Sci.
110
(
1
),
263
271
(
1986
).
49.
M. L.
Forcada
and
C. M.
Mate
, “
The flow of thin viscous liquid films on rotating disks
,”
J. Colloid Interface Sci.
160
(
1
),
218
225
(
1993
).
50.
Y.
Matsumiya
and
H.
Watanabe
, “
Non-universal features in uniaxially extensional rheology of linear polymer melts and concentrated solutions: A review
,”
Prog. Polym. Sci.
112
,
101325
(
2021
).
51.
H.
Watanabe
,
Y.
Matsumiya
, and
T.
Sato
, “
Revisiting nonlinear flow behavior of rouse chain: Roles of FENE, friction-reduction, and Brownian force intensity variation
,”
Macromolecules
54
(
8
),
3700
3715
(
2021
).
52.
G.
Ianniruberto
,
Y.
Marrucci
, and
Y.
Masubuchi
, “
Melts of linear polymers in fast flows
,”
Macromolecules
53
(
13
),
5023
5033
(
2020
).
53.
M.
Zatloukal
and
J.
Drabek
, “
Reduction of monomeric friction coefficient for linear isotactic polypropylene melts in very fast uniaxial extensional flow
,”
Phys. Fluids
33
(
5
),
051703
(
2021
).
54.
J.
van Meerveld
, “
A method to extract the monomer friction coefficient from the linear viscoelastic behavior of linear, entangled polymer melts
,”
Rheol. Acta
43
(
6
),
615
623
(
2004
).
55.
K.
Cui
,
Z.
Ma
,
N.
Tian
,
F.
Su
,
D.
Liu
, and
L.
Li
, “
Multiscale and multistep ordering of flow-induced nucleation of polymers
,”
Chem. Rev.
118
(
4
),
1840
1886
(
2018
).
56.
Z.
Wang
,
Z.
Ma
, and
L.
Li
, “
Flow-induced crystallization of polymers: Molecular and thermodynamic considerations
,”
Macromolecules
49
(
5
),
1505
1517
(
2016
).
57.
R. H.
Somani
,
L.
Yang
,
L.
Zhu
, and
B. S.
Hsiao
, “
Flow-induced shish-kebab precursor structures in entangled polymer melts
,”
Polymer
46
(
20
),
8587
8623
(
2005
).
58.
R.
Pantani
,
I.
Coccorullo
,
V.
Speranza
, and
G.
Titomanlio
, “
Modeling of morphology evolution in the injection molding process of thermoplastic polymers
,”
Prog. Polym. Sci.
30
(
12
),
1185
1222
(
2005
).
59.
A. K.
Doufas
,
A. J.
McHugh
, and
C.
Miller
, “
Simulation of melt spinning including flow-induced crystallization Part I. Model development and predictions
,”
J. Non-Newtonian Fluid Mech.
92
(
1
),
27
66
(
2000
).
60.
R. S.
Graham
, “
Understanding flow-induced crystallization in polymers: A perspective on the role of molecular simulations
,”
J. Rheol.
63
(
1
),
203
214
(
2019
).
61.
M. H.
Wagner
,
S.
Kheirandish
, and
O.
Hassager
, “
Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts
,”
J. Rheol.
49
(
6
),
1317
1327
(
2005
).
62.
M. H.
Wagner
,
V. H.
Rolón-Garrido
,
J. K.
Nielsen
,
H. K.
Rasmussen
, and
O.
Hassager
, “
A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends
,”
J. Rheol.
52
(
1
),
67
86
(
2008
).
63.
E.
Narimissa
and
M. H.
Wagner
, “
Review on tube model based constitutive equations for polydisperse linear and long-chain branched polymer melts
,”
J. Rheol.
63
(
2
),
361
375
(
2019
).
64.
E.
Narimissa
,
Q.
Huang
, and
M. H.
Wagner
, “
Elongational rheology of polystyrene melts and solutions: Concentration dependence of the interchain tube pressure effect
,”
J. Rheol.
64
(
1
),
95
110
(
2020
).
65.
E.
Narimissa
and
M. H.
Wagner
, “
Modeling nonlinear rheology of unentangled polymer melts based on a single integral constitutive equation
,”
J. Rheol.
64
(
1
),
129
140
(
2020
).
66.
T.
Sato
,
Y.
Kwon
,
Y.
Matsumiya
, and
H.
Watanabe
, “
A constitutive equation for Rouse model modified for variations of spring stiffness, bead friction, and Brownian force intensity under flow
,”
Phys. Fluids
33
(
6
),
063106
(
2021
).
67.
G.
Ianniruberto
and
G.
Marrucci
, “
Molecular dynamics reveals a dramatic drop of the friction coefficient in fast flows of polymer melts
,”
Macromolecules
53
(
7
),
2627
2633
(
2020
).
68.
M.
Zatloukal
, “
Frame-invariant formulation of novel generalized Newtonian fluid constitutive equation for polymer melts
,”
Phys. Fluids
32
(
9
),
091705
(
2020
).
69.
M.
Zatloukal
, “
A simple phenomenological non-Newtonian fluid model
,”
J. Non-Newtonian Fluid Mech.
165
(
11–12
),
592
595
(
2010
).
70.
M.
Zatloukal
, “
Novel non-Newtonian fluid model for polymer melts
,” in
Annual Technical Conference - ANTEC, Conference Proceedings
(Society of Plastics Engineers,
2011
), Vol.
1
, pp.
92
96
.
71.
R.
Kolarik
,
M.
Zatloukal
, and
M.
Martyn
, “
The effect of polyolefin extensional rheology on non-isothermal film blowing process stability
,”
Int. J. Heat Mass Transfer
56
(
1–2
),
694
708
(
2013
).
72.
M.
Zatloukal
, “
Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt
,”
Polymer
104
,
258
267
(
2016
).
73.
J.
Drabek
and
M.
Zatloukal
, “
Evaluation of thermally induced degradation of branched polypropylene by using rheology and different constitutive equations
,”
Polymers
8
(
9
),
317
(
2016
).
74.
D.
Auhl
,
D. M.
Hoyle
,
D.
Hassell
,
T. D.
Lord
,
O. G.
Harlen
,
M. R.
Mackley
, and
T. C. B.
McLeish
, “
Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts
,”
J. Rheol.
55
(
4
),
875
(
2011
).
75.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
1987
), Vol.
1
.
76.
J. M.
Dealy
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
, 2nd ed. (
Hanser
,
Munich
2018
).
77.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford Science Publications, Oxford
,
1986
).
78.
K.
Osaki
,
K.
Nishizawa
, and
M.
Kurata
, “
Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems
,”
Macromolecules
15
(
4
),
1068
1071
(
1982
).
79.
M. H.
Wagner
,
E.
Narimissa
, and
Q.
Huang
, “
Scaling relations for brittle fracture of entangled polystyrene melts and solutions in elongational flow
,”
J. Rheol.
65
(
3
),
311
324
(
2021
).
80.
L. J.
Fetters
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights
,”
Macromolecules
32
(
20
),
6847
6851
(
1999
).
81.
Q.
Huang
,
O.
Mednova
,
H. K.
Rasmussen
,
N. J.
Alvarez
,
A. L.
Skov
,
K.
Almdal
, and
O.
Hassager
, “
Concentrated polymer solutions are different from melts: Role of entanglement molecular weight
,”
Macromolecules
46
,
5026
5035
(
2013
).
82.
L. J.
Fetters
,
D. J.
Lohse
, and
R.
Colby
, “
Chain dimensions and entanglement spacings
,” in
Physical Properties of Polymers Handbook
, 2nd ed., edited by
J. E.
Mark
(
Springer
,
NY
,
2007
), pp.
447
454
.
83.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 84th ed. (
CRC Press
,
Boca Raton
,
1999
).
84.
S.
Wu
, “
Control of intrinsic brittleness and toughness of polymers and blends by chemical structure: A review
,”
Polym. Int.
29
(
3
),
229
247
(
1992
).
85.
J.
Drabek
,
M.
Zatloukal
, and
M.
Martyn
, “
Effect of molecular weight, branching and temperature on dynamics of polypropylene melts at very high shear rates
,”
Polymer
144
,
179
183
(
2018
).
86.
R. G.
Larson
and
P. S.
Desai
, “
Modeling the rheology of polymer melts and solutions
,”
Annu. Rev. Fluid Mech.
47
,
47
65
(
2015
).
87.
T.
Sridhar
,
M.
Acharya
,
D. A.
Nguyen
, and
P. K.
Bhattacharjee
, “
On the extensional rheology of polymer melts and concentrated solutions
,”
Macromolecules
47
(
1
),
379
386
(
2014
).
88.
P. K.
Bhattacharjee
,
J. P.
Oberhauser
,
G. H.
McKinley
,
L. G.
Leal
, and
T.
Sridhar
, “
Extensional rheometry of entangled solutions
,”
Macromolecules
35
(
27
),
10131
10148
(
2002
).
89.
P. J.
Carreau
, “
Rheological equations from molecular network theories
,”
Trans. Soc. Rheol.
16
(
1
),
99
127
(
1972
).
90.
G.
Marrucci
and
N.
Grizzuti
, “
Fast flows of concentrated polymers: Predictions of the tube model on chain stretching
,”
Gazz. Chim. Ital.
118
,
179
185
(
1988
).
91.
D.
Pearson
,
E.
Herbolzheimer
,
N.
Grizzuti
, and
G.
Marrucci
, “
Transient behavior of entangled polymers at high shear rates
,”
J. Polym. Sci., Part B: Polym. Phys.
29
(
13
),
1589
1597
(
1991
).
92.
D. W.
Mead
and
L. G.
Leal
, “
The reptation model with segmental stretch - I. Basic equations and general properties
,”
Rheol. Acta
34
(
4
),
339
359
(
1995
).
93.
D. W.
Mead
,
D.
Yavich
, and
L. G.
Leal
, “
The reptation model with segmental stretch - II. Steady flow properties
,”
Rheol. Acta
34
(
4
),
360
383
(
1995
).
94.
S. T.
Milner
and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
(
3
),
725
728
(
1998
).
95.
D. W.
Mead
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
(
22
),
7895
7914
(
1998
).
96.
M.
Doi
, “
Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model
,”
J. Polym. Sci., Part A-2
21
(
5
),
667
684
(
1983
).
97.
M.
Doi
and
N. Y.
Kuzuu
, “
Rheology of star polymers in concentrated solutions and melts
,”
J. Polym. Sci., Polym. Lett. Ed.
18
,
775
780
(
1980
).
98.
G.
Ianniruberto
and
G.
Marrucci
, “
A simple constitutive equation for entangled polymers with chain stretch
,”
J. Rheol.
45
(
6
),
1305
1318
(
2001
).
99.
P. S.
Desai
and
R. G.
Larson
, “
Constitutive model that shows extension thickening for entangled solutions and extension thinning for melts
,”
J. Rheol.
58
(
1
),
255
279
(
2014
).
100.
T.
Yaoita
,
T.
Isaki
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
, and
G.
Marrucci
, “
Primitive chain network simulation of elongational flows of entangled linear chains: Stretch/orientation-induced reduction of monomeric friction
,”
Macromolecules
45
(
6
),
2773
2782
(
2012
).
101.
M.
Purkait
,
K. K.
Mihir
,
M.
Sinha
,
K. P.
Mondal
, and
R.
Singh
,
Stimuli Responsive Polymeric Membranes: Smart Polymeric Membranes
(
Academic Press, an imprint of Elsevier
,
London
,
2018
).
102.
P.
Arora
and
Z.
Zhang
, “
Battery separators
,”
Chem. Rev.
104
(
10
),
4419
4462
(
2004
).
103.
Y.
Masubuchi
,
Y.
Matsumiya
, and
H.
Watanabe
, “
Test of orientation/stretch-induced reduction of friction via primitive chain network simulations for polystyrene, polyisoprene, and poly(n-butyl acrylate
,”
Macromolecules
47
(
19
),
6768
6775
(
2014
).
104.
P. K.
Bhattacharjee
,
D. A.
Nguyen
,
G. H.
McKinley
, and
T.
Sridhar
, “
Extensional stress growth and stress relaxation in entangled polymer solutions
,”
J. Rheol.
47
(
1
),
269
290
(
2003
).
You do not currently have access to this content.